Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96238
標題: Effects of application of silicon, Fenton's reagent and beneficial microbes on bacterial spot of tomato
矽肥、Fenton試劑和有益微生物對番茄細菌性斑點病之影響
作者: Yi-Chun Chien
簡宜君
關鍵字: 番茄細菌性斑點病;矽;木黴菌;芽孢桿菌;Fenton試劑;bacterial spot of tomato;silicon;Trichoderma;Bacillus;Fenton's reagent
引用: 陸、參考文獻 吳雅芳、陳紹崇、彭瑞菊、黃淑惠、鄭安秀。2008。茄科細菌性斑點病病原細菌抗銅性之探討。台南區農業專訊 64 期。台南。 費雯綺、王喻其、陳富翔、林曉民、李貽華。2010。植物保護手冊-蔬菜篇。行政院農業委員會農業藥物毒物試驗所。台中。 黃德昌。2008。台灣作物細菌性病害防治要領。作物診斷與農藥安全使用技術手冊。p142-161。台中。 謝銀徳、陳鋒、何建軍與趙進財。2000。Photo-Fenton反應研究進展。感光科學與光化學。18(4):357-365。 Adatia, M. H., and R.T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot-London. 58:343-351. Ajilogba, C.F., and O.O. Babalola. 2013. Integrated management strategies for tomato Fusarium wilt. Biocontrol. Sci. 18:117-127. Ahmed, E., and S.J.M. Holmstrom. 2014. Siderophores in environmental research: roles and applications. Microb Biotechnol. 7:196-208. Amtmann, A., S. Troufflard and P. Armengaud. 2008. The effect ofpotassium nutrition on pest and disease resistance in plants. Physiol. Plant. 133:682-691. Benítez, T., A.M. Rincón, M.C. Limón and A.C. Codón. 2004. Biocontrolmechanisms of Trichoderma strains. Int. Microbiol. 7:249-260. Bremner, J.M., and C.S. Mulvancy. 1982. Method of Soil Analysis. Vol.2. 595-624. New York:USA. Academic Press. Bowen, P., J. Menzies and D. Ehret. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hortic. Sci. 117:906-912. Cherif, M., A. Asselin, and R.R. Belanger. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. J. Phytopathol. 84:236-242. Choudhary, D. K., and B.N. Johri. 2009. Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiol. Res. 164:493-513. Dik, A.J., M.A. Verhaar, and R.R. Bélanger. 1998. Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials. Eur. J. Plant Pathol. 104:413-423. Druzhinina, I.S., V. Seidl-Seiboth, A. Herrera-Estrella, B.A. Horwitz, C.M. Kenerley, E. Monte, P.K. Mukherjee, S. Zeilinger, I.V. Grigoriev and C.P. Kubicek. 2011. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9:749-759. Elliott, C. L., and G.H. Snyder. 1991. Autoclave-induced digestion for the coloeimetric determination of silicon in rice straw. J. Agr. Food Chem. 39:1118-1119. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U. S. A. 91:11-17. Epstein, E. 1999. Silicon. Annu. Rev. Plant Phys. 50:641-664. Evans, M.E., D.J. Feola, and R.P. Rapp. 1999. B. Polymyxin sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann. Pharmacother. 33: 960-967. Gupta, C.P., R.C. Dubey, and D.K. Maheshwari. 2002. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertil. Soils 35:399-405. Gordon, S.A., and R.P. Weber. 1951. Coloeimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195. Gravel, V., H. Antoun and R.J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil. Biol. Biochem. 39:1968-1977. Harman, G.E. 2006. Overview of Mechanisms and Uses of Trichoderma spp. Phytopathol. 96:190-194. Hankin, L., and S. Anagnostakis. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia. 597-607 Hoagland, D.R., and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347. Horiguchi, T., and S. Morita. 1987. Effect of silicon on alleviation of toxicity of barley. J. Plant Nutr. 10:2299-2310. Horsfall, J.G. and E.B. Cowling. 1975. Plant disease an advanced treatise. Vol.2. 119-134. New York:USA. Academic Press. Horst, W. J., and H. Marschner. 1978. Effect of silicon on manganese tolerance of bean-plants (Phaseolus vulgaris L.). Plant Soil. 50:287-303. Howell, C. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant. Dis. 87:4-10. Hsu, S.C., and J.L. Lockwood. 1975. Powdered chitin in agar as selective medium for enumeration of actinomycetes in water and soil. Appl. Microbiol. 29:422-426. Huang, C. H., G.E. Vallad, S.A. Zhang, A.M. Wen, B. Balogh, J.F.L. Figueiredo, and S.M. Olson. 2012. Effect of Application Frequency and Reduced Rates of Acibenzolar-S-Methyl on the Field Efficacy of Induced Resistance Against Bacterial Spot on Tomato. Plant Dis. 96:221-227. Khamna, S., A. Yokota, and S. Lumyong. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25:649-655. Kausar, H., M. Sariah, H.M. Saud, M.Z. Alam and M.R. Ismail. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation. 22:367-375. Kauss, H., K. Seehaus, R. Franke, S. Gilbert, R.A. Dietrich and N. Kröger. 2003. Silica deposition by a strongly cationic proline‐rich protein from systemically resistant cucumber plants. Plant J. 33: 87-95. Kavitha, R., and S. Umesha. 2008. Regulation of defense-related enzymes associated with bacterial spot resistance in tomato. Phytoparasitica. 36:144-159. Kloepper, J. W., C.M. Ryu, and S.A. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94:1259-1266. Kraska, J. E., and G.A. Breitenbeck. 2010. Simple, Robust Method for Quantifying Silicon in Plant Tissue. Commun. Soil Sci. Plant Anal. 41:2075-2085. Kubicek, C.P. and G.E. Harman. 1998. Trichoderma and Gliocladium. vol.1. Florida:USA. CRC Press. Liang, Y. C., Q.R. Shen, Z.G. Shen, and T.S. Ma. 1996. Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr. 19:173-183. Liang, Y. C. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil. 209:217-224. Liang, Y. C., Q. Chen, Q. Liu, W.H. Zhang, and R.X. Ding. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Plant Physiol. 160:1157-1164. Liang, Y. C., J. Si, and V. Romheld. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 167:797-804. Liang, Y. C., W.C. Sun, J. Si, and V. Romheld. 2005. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 54:678-685. Liang, Y. C., W.H. Zhang, Q. Chen, Y.L. Liu, and R.X. Ding, 2006. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 57:212-219. Lue, Y.S., W.L. Deng1, Y.F. Wu, A.S. Cheng, S.T. Hsu, and K.C. Tzeng. 2010. Characterization of Xanthomonas Associated with Bacterial Spot of Tomato and Pepper in Taiwan. Plant Pathol. Bull. 19:181-190. Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50: 11-18. Ma, J. F., S. Goto, K. Tamai, and M. Ichii. 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol. 127:1773-1780. Ma, J. F., K. Tamai, M. Ichii, and G.F. Wu. 2002. A rice mutant defective in Si uptake. Plant Physiol. 130: 2111-2117. Mahasneh, A. M., and D.J. Stewart. 1980. A medium for detecting beta-1-3 glucanase activity on bacteris. J. Appl. Bacteriol. 48:457-458. Majumdar, S. K., and S.K. Bose, S. K. 1958. Mycobacillin, a new antifungal antibiotic produced by B. subtilis. Nature. 181:134-135. Miyake, Y., and E. Takahashi. 1983. Effect of silicon on the growth of cucumber plant in soil culture. Soil Sci. Plant Nutr. 29:463-471. Mitani, N., and J.F. Ma. 2005. Uptake system of silicon in different plant species. J. Exp. Bot. 56:1255-1261. McKeague, J. and M. Cline. 1963. Silica in soils. Adv. Agron. 15:339-396. Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P. (2008) Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria. J Agric Food Chem 56:4474–4481. Neilands, J.B. 1995. Siderophores-structure and function of microbial iron transport compounds J. Biol. Chem. 270:26723-26726. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59:410-416. Pernezny, K., R. Nagata, N. Havranek, and J. Sanchez. 2008. Comparison of two culture media for determination of the copper resistance of Xanthomonas strains and their usefulness for prediction of control with copper bactericides. Crop Prot. 27:256-262. Pérez-García, A., D. Romero, and A. De Vicente. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193. Pérez-Miranda, S., N. Cabirol, R. George-Téllez, L. Zamudio-Rivera and F. Fernández. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Methods. 70:127-131. Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 17:362-370. Rautela, G.S., and E.B. Cowling. 1966. Simple cultural test for relative cellulolytic activity of fungi. Appl. microbiol. 14:892-898. Richmond, K. E., and M. Sussman. 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 6:268-272. Rodríguez, H., and R. Frago. 1999. Phosphate solubilizing bacteria andtheir role in plant growth promotion. Biotechnol. Adv. 17:319-339. Rodrigues, F.A., F.X.R. Vale, G.H. Korndörfer, A.S. Prabhu, L.E. Datnoff, A.M.A. Oliveira, and L. Zambolim. 2003. Influence of silicon on sheath blight of rice in Brazil. Crop Prot. 22:23-29. Sakugawa, H., N. Hasan, I. Oguntimehin, and E. Belal. 2012. Protective and curative effects of foliar-spray Fenton solutions against cucumber (Cucumis sativus, L.) powdery mildew. J. Environ. Sci. Health, Part A: Environ. Sci. Eng. 47:1909-1918. Samuels, A. L., A.D.M. Glass, D.L. Ehret, and J.G. Menzies. 1991. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Can. J. Bot. 69:140-146. Santiago, A.d., J.M. Quintero, M. Avilés and A. Delgado. 2011. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil. 342:97-104. Savant, N. K., L.E. Datnoff, and G.H. Snyder. 1997. Depletion of plant-available silicon in soils: A possible cause of declining rice yields. Commun. Soil Sci. Plant Anal. 28: 1245-1252. Seebold, K. W., T.A. Kucharek, L.E. Datnoff, F.J. Correa-Victoria, and M.A. Marchetti. 2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology. 91:63-69. Shastry, S., and M.S. Prasad. 2002. Extracellular protease from Pseudomonas sp. (CL1457) active against Xanthomonas campestris. Process Biochem. 37:611-621. Shi, X. H., C.C. Zhang, H. Wang, and F.S. Zhang. 2005. Effect of Si on the distribution of Cd in rice seedlings. Plant Soil. 272:53-60. Skujins, J.J., H.J.Potgieter and M. Alexander. 1965. Dissolution of fungal cell walls by a streptomycete chitinase and β-1-3 glucanase. ABB. 111:358-364. Sulochana, M.B., S.Y. Jayachandra, S.A. Kumar, A.B. Parameshwar, K.M. Reddy, and A. Dayanand. 2014. Siderophore as a Potential Plant Growth-Promoting Agent Produced by Pseudomonas aeruginosa JAS-25. Appl. Biochem. Biotechnol. 174:297-308. Takahashi E. and Y. Miyake. 1982. Effects of silicon on the growth of cucumber plant - comparative studies on the silicon nutrition. Plant Nutr. 9:22-27. Vanacker, H., Carver, T. L.W. and Foyer, C. H. 2000. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response on the barley-powdery mildew interaction. Plant Physiol. 123:1289–1399. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255:571-586. Windham, M.T., Y. Elad, and R. Baker. 1986. A mechanism for increasd plant-growth induced by Trichoderma spp. Phytopathology. 76:518-521.
摘要: 
番茄在全球是消費量僅次於馬鈴薯的蔬菜,而細菌性斑點病為番茄的重要病害之一,且其病原菌之抗藥性逐漸攀升,成為番茄生產之難題。本研究探討矽肥、Fenton試劑及有益微生物在防治番茄細菌性斑點病之效應。研究結果顯示,NB中含有pH 10之矽酸鉀溶液可促進病原菌之生長,而當其噴施於番茄葉部時,可顯著抑制番茄細菌性斑點之發展,抑制率達36% 。而芽孢桿菌CHB310以及木黴菌CHF78 在培養基中皆能對病原菌產生抑制圈,番茄葉部噴施CHB310或CHF78可顯著抑制番茄細菌性斑點病之發展,接種病原菌前施用其病害防治率達35% 及45% 。此外,介質澆灌CHB310或CHF78亦可顯著抑制番茄細菌性斑點病之發展,接種病原菌前施用其抑制率達22% 及24% 。NB 中含有Fenton試劑並添加不同有機酸時,能大幅抑制病原菌之生長,而當噴施於番茄葉部時,亦可顯著降低茄細菌性斑點病之發展。矽酸鉀、CHB310以及CHF78之葉面噴施與介質澆灌共同施用,對番茄細菌性斑點病之抑制效應並無顯著加乘趨勢,但噴施CHB310或CHF78於葉表與介質澆灌矽酸鉀同時處理,可降低細菌性斑點病之發生並促進番茄植株在細菌性斑點病下之生長。綜上所述,葉部噴施矽酸鉀、Fenton試劑於葉部、或同時噴施CHB310或CHF78於葉表與介質澆灌矽酸鉀,可作為管理番茄性菌性斑點病之策略。

Tomato is one of the most important vegetables in the world, which ranks second to potato. Bacterial spot on tomato causes serious economic losses in Taiwan. The disease caused by Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri has been problematic due to their resistance to pesticides. The objective of this study was to evaluate the effects of application of silicon fertilization, Fenton's reagent and beneficial microorganisms on control of bacterial spot on tomato. Potassium silicate solution added into nutrient broth could promote the growth of X. perforans, but compared to the control it significantly reduced disease development up to 36% as tomato seedlings were sprayed with the solution. Bacillus sp. CHB310 and Trichoderma asperellum CHF78 significantly inhibited the growth of X. perforans in vitro, and foliar applications each of these two antagonists before inoculation of tomato seedlinds with X. perforans significantly reduced disease development up to 35% and 45%, respectively. In addition, growth medium applied with either CHB310 or CHF78 before inoculation with X. perforans could also significantly decrease disease development by 22% and 32%. Fenton's reagent amended with different organic acids added into nutrient broth could significantly inhibit the growth of the pathogen, and their foliar applications significantly inhibited disease development. The combined foliar and crown applications of respective potassium silicate, CHB310 and CHF78 did not significantly reduce disease severity as compared to their application alone. However, foliar spray of either CHB310 or CHF78 along with growth medium application of potassium silicate significantly reduced bacterial spot on tomato and enhanced tomato growth. In summary, foliar applications of respective potassium silicate and Fenton's reagent, and foliar sprays of either CHB310 or CHF78 along with growth medium application of potassium silicate may be used for control of bacterial spot on tomato.
URI: http://hdl.handle.net/11455/96238
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-23起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7102039008-1.pdf2.43 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.