Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorSyuan-Lu Chenen_US
dc.identifier.citation王喻其、王泰權、陳富翔、蔡永勝、李宏萍、費雯綺。2012。植物保護手冊–水稻病蟲害篇。行政院農業委員會農業藥物毒物試驗所。 姜金龍、廖乾華、廖芳心、林孟輝、羅秋雄、傅仰人、許啟誠。2010。桃園區農業技術專輯第6號-水稻專輯。行政院農業委員會桃園區農業改良場。 陳隆澤、羅正宗、吳永培、陳一心。2004。水稻新品種-臺農秈 22 號之育成。行政院農業委員會農業試驗所技術服務季刊,59:10-13。 Adam, G., and H. Duncan. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33: 943-951. Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science 26: 1-20. Ainsworth, E.A., and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. Plant Cell Environ. 30: 258-270. Aquilanti, L., F. Favilli, and F. Clementi. 2004. Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biolo. Biochem. 36: 1475-1483. Baggs, E., M. Richter, G. Cadisch, and U. Hartwig. 2003. Denitrification in grass swards is increased under elevated atmospheric CO₂. Soil Biolo. Biochem. 35: 729-732. Becking, J.H. 2006. The family azotobacteraceae. In: R. Eugene et al., editors, The prokaryotes. Springer, New York, USA. p. 759-783. Bengtsson, G., P. Bengtson, and K.F. Månsson. 2003. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biolo. Biochem. 35: 143-154. Bhattacharyya, P., K. Roy, S. Neogi, M. Manna, T. Adhya, K. Rao, et al. 2013. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice. Environ. Monit. Assess. 185: 8659-8671. Bloom, A.J. 2015. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynth. Res. 123: 117-128. Bremner, J.M., and C. Mulvaney. 1982. Nitrogen—total. In: R.W. Weaver, J.S. Angle, and P.S. Bottomley, editors, Methods of soil analysis. Part 2, 2nd edition. Agronomy Monograph 9: 595-624. ASA-SSSA, Madison, Wisconsin. Bric, J.M., R.M. Bostock, and S.E. Silverstone. 1991. Rapid insitu assay for indoleacetic-acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538. Ceccarelli, S., S. Grando, M. Maatougui, M. Michael, M. Slash, R. Haghparast, et al. 2010. Plant breeding and climate changes. J. Agric. Sci. 148: 627-637. Challinor, A., T. Wheeler, P. Craufurd, C. Ferro, and D. Stephenson. 2007. Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric. Ecosyst. Environ. 119: 190-204. Chen, Y., Z. Li, Y. Fan, H. Wang, and H. Deng. 2015. Progress and prospects of climate change impacts on hydrology in the arid region of northwest china. Environ. Res. 139: 11-19. Cheng, W., H. Sakai, K. Yagi, and T. Hasegawa. 2009. Interactions of elevated CO₂ and night temperature on rice growth and yield. Agric. For. Meteorol. 149: 51-58. Cheng, W., H. Sakai, K. Yagi, and T. Hasegawa. 2010. Combined effects of elevated CO₂ and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza Sativa L.). Agric. For. Meteorol. 150: 1174-1181. Clark, M.S. 2013. Plant molecular biology—a laboratory manual. Springer Science & Business Media. Conroy, J.P. 1992. Influence of elevated atmospheric CO₂ concentrations on plant nutrition. Aust. J. Bot. 40: 445-456. DaMatta, F.M., A. Grandis, B.C. Arenque, and M.S. Buckeridge. 2010. Impacts of climate changes on crop physiology and food quality. Food Res. Intern. 43: 1814-1823. De Graaff, M.A., K.J. Van Groenigen, J. Six, B. Hungate, and C. van KESSEL. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO₂: A meta‐analysis. Glob. Chang. Biolo. 12: 2077-2091. Dewan, G., and N.S. Rao. 1979. Seed inoculation with Azospirillum brasilense and Azotobacter chroococcum and the root biomass of rice (Oryza Sativa L.). Plant Soil 53: 295-302. Dijkstra, F.A., D. Blumenthal, J.A. Morgan, E. Pendall, Y. Carrillo, and R.F. Follett. 2010. Contrasting effects of elevated CO₂ and warming on nitrogen cycling in a semiarid grassland. New Phytol. 187: 426-437. Ebersberger, D., P.A. Niklaus, and E. Kandeler. 2003. Long term CO₂ enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biolo. Biochem. 35: 965-972. Fan, M., J. Shen, L. Yuan, R. Jiang, X. Chen, W.J. Davies, et al. 2012. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in china. J. Exp.Bot. 63: 13-24. Fangmeier, A., L. De Temmerman, C. Black, K. Persson, and V. Vorne. 2002. Effects of elevated CO₂ and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur. J. Agron. 17: 353-368. French, S., D. Levy-Booth, A. Samarajeewa, K.E. Shannon, J. Smith, and J.T. Trevors. 2009. Elevated temperatures and carbon dioxide concentrations: Effects on selected microbial activities in temperate agricultural soils. World J. Microbiol. Biotechnol. 25: 1887-1900. Glick, B.R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012. Högy, P., and A. Fangmeier. 2008. Effects of elevated atmospheric CO₂ on grain quality of wheat. J. Cereal Sci. 48: 580-591. Hardy, R.W.F., R.C. Burns, and R.D. Holsten. 1973. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 5: 47-81. Hartl, W., and E. Erhart. 2005. Crop nitrogen recovery and soil nitrogen dynamics in a 10‐year field experiment with biowaste compost. J. Plant Nutr. Soil Sci. 168: 781-788. Hasegawa, T., Y. Koroda, N.a.G. Seligman, and T. Horie. 1994. Response of spikelet number to plant nitrogen concentration and dry weight in paddy rice. Agron. J. 86: 673-676. Hofmockel, K.S., A. Gallet-Budynek, H.R. McCarthy, W.S. Currie, R.B. Jackson, and A.C. Finzi. 2011. Sources of increased N uptake in forest trees growing under elevated CO₂: Results of a large-scale 15N study. Glob. Change Biol. 17: 3338–3350. Hoque, M.M., K. Inubushi, S. Miura, K. Kobayashi, H. Y. Kim, M. Okada, et al. 2002. Nitrogen dynamics in paddy field as influenced by free-air CO₂ enrichment (FACE) at three levels of nitrogen fertilization. Nutr. Cycl. Agroecosys. 63: 301-308. Horneck, D.A., D.M. Sullivan, J.S. Owen, and J.M. Hart. 2011. Soil test interpretation guide. Oregon State University, Extension Service, Corvallis. Hu, S., F.S. Chapin, M. Firestone, C. Field, and N. Chiariello. 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO₂. Nature 409: 188-191. Igarashi, R.Y., and L.C. Seefeldt. 2003. Nitrogen fixation: The mechanism of the Mo-dependent nitrogenase. Crit. Rev. Biochem. Mol.Biol. 38: 351-384. Jagadish, S., P. Craufurd, and T. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza Sativa L.). J. Exp. Bot. 58: 1627-1635. Jagadish, S., R. Muthurajan, R. Oane, T.R. Wheeler, S. Heuer, J. Bennett, et al. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza Sativa L.). J. Exp. Bot. 61: 143-156. Jaggard, K.W., A. Qi, and E.S. Ober. 2010. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 2835–2851. Jimenez, D.J., J.S. Montana, and M.M. Martinez. 2011. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown colombian soils. Braz. J. Microbiol. 42: 846-858. Johri, J.K., S. Surange, and C.S. Nautiyal. 1999. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr. Microbiol.39: 89-93. Kanno, K., T. Mae, and A. Makino. 2009. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Sci. Plant Nutr. 55: 124-131. Kausar, H., M. Sariah, H.M. Saud, M.Z. Alam, and M.R. Ismail. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22: 367-375. Kaye, J.P., and S.C. Hart. 1997. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12: 139-143. Kersebaum, K., and C. Nendel. 2014. Site-specific impacts of climate change on wheat production across regions of germany using different CO₂ response functions. Eur. J. Agron. 52: 22-32. Kim, H.-Y., M. Lieffering, K. Kobayashi, M. Okada, M.W. Mitchell, and M. Gumpertz. 2003. Effects of free-air CO₂ enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crop. Res. 83: 261-270. Kim, H., M. Lieffering, S. Miura, K. Kobayashi, and M. Okada. 2001. Growth and nitrogen uptake of CO₂‐enriched rice under field conditions. New Phytol. 150: 223-229. Kim, H.Y., M. Lieffering, K. Kobayashi, M. Okada, and S. Miura. 2003. Seasonal changes in the effects of elevated CO₂ on rice at three levels of nitrogen supply: A free air CO₂ enrichment (FACE) experiment. Glob. Change Biol. 9: 826-837. Kim, J. and D.C. Rees. 1994. Nitrogenase, and biological nitrogen fixation. Biochemistry 33: 389-397. Kim, Y., K. Mikawa, T. Saito, K. Tanaka, and H. Emori. 1997. Development of novel anaerobic/aerobic filter process for nitrogen removal using immobilized nitrifier pellets. Water Sci. Technol. 36: 151-158. Kizilkaya, R. 2008. Yield response, and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol. Eng. 33: 150-156. Krishnan, P., B. Ramakrishnan, K. Raja Reddy, and V. Reddy. 2011. High-temperature effects on rice growth, yield, and grain quality. Adv. Agron. 111: 87. Ladha, J., F. De Bruijn, and K. Malik. 1997. Introduction: Assessing opportunities for nitrogen fixation in rice. Plant Soil 194: 1-10. Li, Z., K. Yagi, H. Sakai, and K. Kobayashi. 2004. Influence of elevated CO₂ and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4. Plant Soil 258: 81-90. Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort. 2004. Rising atmospheric carbon dioxide: Plants face the future. Annu. Rev. Plant Biol. 55: 591-628. Luo, Y., B. Su, W.S. Currie, J.S. Dukes, A. Finzi, U. Hartwig, et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54: 731-739. Ma, Y., M. Prasad, M. Rajkumar, and H. Freitas. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29: 248-258. Mohammed, A.-R., and L. Tarpley. 2009. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci. 49: 313-322. Nagarajan, S., S. Jagadish, A.H. Prasad, A. Thomar, A. Anand, M. Pal, et al. 2010. Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern india. Agr. Ecosyst. Environ.138: 274-281. Nelson, D., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2, 2nd edition. Agronmy Monograph 9: 539-579. ASA-SSSA, Madision, Wisconsin. Niboyet, A., L. Barthes, B.A. Hungate, X. Le Roux, J.M. Bloor, A. Ambroise, et al. 2010. Responses of soil nitrogen cycling to the interactive effects of elevated CO₂ and inorganic N supply. Plant Soil 327: 35-47. Niboyet, A., X. Le Roux, P. Dijkstra, B. Hungate, L. Barthes, J. Blankinship, et al. 2011. Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2: 1-24. Peng, S., J. Huang, J.E. Sheehy, R.C. Laza, R.M. Visperas, X. Zhong, et al. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. 101: 9971-9975. Perez-Miranda, S., N. Cabirol, R. George-Tellez, L.S. Zamudio-Rivera, and F.J. Fernandez. 2007. O-cas, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70: 127-131. Ponmurugan, K., A. Sankaranarayanan, and N.A. Al-Dharbi. 2012. Biological activities of plant growth promoting azotobacter sp. Isolated from vegetable crops rhizosphere soils. J. Pure Appl.Microbio. 6: 1-10. Rajkumar, M., M.N.V. Prasad, S. Swaminathan, and H. Freitas. 2013. Climate change driven plant–metal–microbe interactions. Environ. Int. 53: 74-86. Raupach, M.R., G. Marland, P. Ciais, C. Le Quéré, J.G. Canadell, G. Klepper, et al. 2007. Global and regional drivers of accelerating CO₂ emissions. Proc. Natl. Acad. Sci. 104: 10288-10293. Raymond, J., J.L. Siefert, C.R. Staples, and R.E. Blankenship. 2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21: 541-554. Reddy, A.R., G.K. Rasineni, and A.S. Raghavendra. 2010. The impact of global elevated CO₂ concentration on photosynthesis and plant productivity. Curr. Sci. 99: 46-57. Reed, S.C., C.C. Cleveland, and A.R. Townsend. 2011. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol., Evol. Syst. 42: 489–512. Reich, P.B., S.E. Hobbie, T. Lee, D.S. Ellsworth, J.B. West, D. Tilman, et al. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO₂. Nature 440: 922-925. Roy, M.L. and R.C. Srivastava. 2011. Plant growth promotion potential of Azotobacter chroococcum on growth, biomass, leaf area index and yield parameters of aman rice in tripura. Indian J. Agr. Res. 45: 52-58. Satake, T., and S. Yoshida. 1978. High temperature-induced sterility in indica rices at flowering. Jpn J. Crop Sci. 47: 6-17. Schwyn, B., and J.B. Neilands. 1987. Universal chemical-assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. Seneweera, S. 2011. Effects of elevated CO₂ on plant growth and nutrient partitioning of rice (Oryza Sativa L.) at rapid tillering and physiological maturity. J. Plant Interact. 6: 35-42. Senghor, A., R. Dioh, C. Müller, and I. Youm. 2017. Cereal crops for biogas production: A review of possible impact of elevated CO₂. Renew. Sust. Energ. Rev. 71: 548-554. Shah, F., J. Huang, K. Cui, L. Nie, T. Shah, C. Chen, et al. 2011. Impact of high-temperature stress on rice plant and its traits related to tolerance. The J. Agr. Sci. 149: 545-556. Shimono, H., and J.A. Bunce. 2009. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO₂ concentration. Ann. Bot. 103: 87-94. Shimono, H., K. Suzuki, K. Aoki, T. Hasegawa, and M. Okada. 2010. Effect of panicle removal on photosynthetic acclimation under elevated CO₂ in rice. Photosynthetica 48: 530-536. Smith, K., T. Ball, F. Conen, K. Dobbie, J. Massheder, and A. Rey. 2003. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 54: 779-791. Tan, Z.Y., X.D. Xu, E.T. Wang, J.L. Gag, E. MartinezRomero, and W.X. Chen. 1997. Phylogenetic and genetic relationships of mesorhizobium tianshanense and related rhizobia. Int. J. Syst. Bacteriol. 47: 874-879. Taub, D.R., and X. Wang. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO₂? A critical examination of the hypotheses. J. Integr. Plant Biol. 50: 1365-1374. Tiedje, J.M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic microorganisms 717: 179-244. Tripathi, D.K., V.P. Singh, D.K. Chauhan, S.M. Prasad, and N.K. Dubey. 2014. Role of macronutrients in plant growth and acclimation: Recent advances and future prospective. In: P. Ahmad, M.R.Wani, M.M. Azooz and L.S.P. Tran, editiors, Improvement of crops in the era of climatic changes. Springer. p. 197-216. Wheeler, T., and J. Von Braun. 2013. Climate change impacts on global food security. Science 341: 508-513. Yang, L., Y. Wang, J. Huang, J. Zhu, H. Yang, G. Liu, et al. 2007. Seasonal changes in the effects of free-air CO₂ enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field crop. res. 102: 141-150. Yoshida, H., T. Horie, and T. Shiraiwa. 2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in asia. Field Crop Res. 97: 337-343. Yoshida, S. 1981. Fundamentals of rice crop scienceInt. Rice Res. Inst. Yoshida, S., D. Forno, J. Cock, and K. Gomez. 1976. Laboratory manual for physiological studies of rice. International Rice Research Institute. Zhao, J., Q. Huang, J. Chang, D. Liu, S. Huang, and X. Shi. 2015. Analysis of temporal and spatial trends of hydro-climatic variables in the wei river basin. Environ. Res. 139: 55-64. Ziska, L., W. Weerakoon, O. Namuco, and R. Pamplona. 1996. The influence of nitrogen on the elevated CO₂ response in field-grown rice. Funct. Plant Biol. 23: 45-52.zh_TW
dc.description.abstract水稻是全球主要的糧食作物之一,但氣候變遷對水稻之衝擊可能影響糧食安全。本研究探討不同二氧化碳濃度下,水稻種植於兩種不同土壤、接種游離固氮菌Azotobacter菌株和施用不同氮肥施用量對水稻生長之影響。本研究為複因子試驗設計,包含兩種土壤 (大里和後龍水稻田土壤) 、兩種二氧化碳處理 (500和1000 ppm) 、四種氮肥施用量 (0、60、120及180 kg ha-¹) 及四種接種處理 (3株供試菌株和不接種處理) ,每處理3重複。結果顯示,高二氧化碳環境下 (1000 ppm) ,接種A. chroococcum strain CHB869可顯著增加水稻之總乾重,顯示該菌株可促進水稻的生長和降低逆境之衝擊。高二氧化碳下,大里土壤增加氮肥施用量,因氮肥過量形成逆境降低收穫指數,但於後龍土壤則補償植物氮肥所需而明顯增加收穫指數。高二氧化碳下,大里土壤接種CHB869菌株可顯著增加水稻的穗重、千粒重和收穫指數,但後龍土壤僅接種A. beijerinckii strain CHB 461能顯著增加水稻的千粒重。高二氧化碳下,增加氮肥施用量可顯著增加大里土壤植體養分吸收量,但在後龍土壤,施用高氮肥處理 (180 kg ha-¹) 則明顯降低氮、磷及鉀吸收量。此外,大里土壤接種Azotobacter菌株及後龍土壤接種CHB461顯著降低水稻營養器官中養分的吸收量而提升稻穀養分含量。高二氧化碳下,後龍土壤接種CHB461及大里土壤接種CHB869可降低土壤碳氮比,增加氮源提供,而促進植株生長增加產量。本研究顯示,因應未來氣候變水稻之生產管理,依土壤條件施用適當的Azotobacter菌株和適合的氮肥施用量,並配合土壤肥培管理應可確保氣候變遷下水稻之產量,以維護糧食安全。zh_TW
dc.description.abstractRice is one of the most important food crops in the world, but climate change may affect its yield. The purpose of this study was to study the effects of CO₂ concentrations, soil types, Azotobacter inoculations, and nitrogen fertilization rates on rice growth. A factorial design experiment was carried out including two CO₂ concentrations (500 and 1000 ppm), two soil types (Dali and Houlong soils), four N application rates (0, 60, 120, and 180 kg ha-¹), and four Azotobacter inoculation treatments with a non-inoculated control. Each treatment included three replicates and was arranged in controlled greenhouses using the randomized complete block design. Inoculation of rice plants with A.chroococcum strain CHB869 significantly increased total dry weight under 1000 ppm CO₂, suggesting that the strain considerably promoted rice growth under stresses. Under 1000 ppm CO₂, the harvest index for rice plants grown in Dali soil decreased significantly because excessive N fertilization might result in stresses. In contrast, the harvest index for rice plants grown in Houlong soil under 1000 ppm CO₂ increased significantly with increasing N fertilization. The panicle weight, thousand grain weight, and harvest index of rice plants grown under 1000 ppm CO₂ in Dali soil were significantly increased by CHB869 inoculation. However, only under 1000 ppm CO₂ rice plants inoculated with A.beijerinckii strain CHB461 and grown in Houlong soil showed a significant increase in the thousand weight. Under 1000 ppm CO₂, nutrients uptake of rice plants grown in Dali soil increased significantly with increasing N fertilization. However, the N application rate of 180 kg ha-¹ significantly reduced N, P and K uptake of rice plants grown in Houlong soil. In addition, nutrient uptake of vegetative organs of rice plants grown in Dali soil with the tree individual Azotobacter strains and in Houlong soil with CHB 461 was significantly reduced probably because the nutrients translocated into grains. Under 1000 ppm CO₂, Dali soil inoculated with CHB869 and Houlong soil inoculated with CHB461 significantly reduced soil C/N ratio, providing more nitrogen for root uptake and consequently increasing yields Taken together, the use of Azotobacter spp. along with an appropriate soil fertility management program based on soil properties may ensure yields for rice production under climate change impacts, contributing to food security.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 表次 v 圖次 vi 前言 1 貳、前人研究 2 一、氣候變遷對水稻的影響 2 (一) 溫度對水稻的影響 3 (二) 二氧化碳對水稻的影響 4 (三) 二氧化碳及氮肥利用對水稻的影響 6 二、促進植物生長之微生物特性 7 (一) 微生物之固氮作用 7 (二) 微生物之溶磷作用 9 (三) 吲哚乙酸 (Indole-3-acetic acid, IAA) 9 參、材料與方法 10 一、研究架構 10 二、Azotobacter菌株來源與篩選 11 (一) 菌株篩選來源 11 (二) 菌株分離與保存 11 三、菌株之分子親緣鑑定 12 (一) 染色體DNA萃取 12 (二) 聚合酶連鎖反應 12 四、基本生理特性測試 14 (一) 菌株固氮酵素活性測試 14 (二) 吲哚乙酸 (IAA) 生成能力 14 (三) 磷酸三鈣溶解能力 15 (四) 載鐵能力測試 15 (五) 纖維素分解酵素能力 16 (六) 木質素分解酵素能力 17 五、供試菌株之篩選 18 六、高CO2對游離固氮菌促進水稻生長之影響 19 (一) 溫度和二氧化碳濃度 19 (二) 氮肥施用量 20 (三) 盆栽試驗土壤 20 (四) 水稻種子來源 22 (五) 篩選盆栽試驗之Azotobacter菌株 22 (六) 盆栽試驗 23 六、統計方法 28 肆、結果與討論 29 一、Azotobacter菌株之生理特性分析 29 二、供試菌株之篩選 30 三、進行盆栽試驗前篩選後續研究菌株之苗期試驗 33 四、高二氧化碳對氮肥施用與游離固氮菌促進水稻生長之影響 35 (一) 二氧化碳濃度及接種Azotobacter菌株對水稻生質量累積的影響 35 (二) 二氧化碳及氮肥施用對水稻產量的影響 40 (三) 二氧化碳濃度及菌株接種對水稻產量的影響 44 (四) 二氧化碳濃度及氮肥施用量對植體養分的影響 51 (五) 二氧化碳濃度與Azotobacter菌株接種對植體養分的影響 55 五、二氧化碳、氮肥及接種Azotobacter菌株施用對土壤碳氮比之影響 59 (一) 二氧化碳及氮肥施用對土壤碳氮比之影響 59 (二) 二氧化碳及接種Azotobacter菌株對土壤碳氮之影響 65 伍、結論 71 陸、參考文獻 73 柒、附錄 82zh_TW
dc.subjectClimate changeen_US
dc.titleEffects of elevated CO₂, nitrogen fertilization, and inoculated Azotobacter spp. on rice growthen_US
dc.title高二氧化碳下接種Azotobacter spp.及氮肥施用量對水稻生長之影響zh_TW
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:土壤環境科學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7103039002-1.pdf2.81 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.