Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96251
標題: Detecting Soil Organic Matter Content through Reflectance Spectra
應用反射光譜檢測土壤有機質含量之研究
作者: Yi-Hao Dai
戴逸豪
關鍵字: 土壤有機質;光譜;SOM;Spectra
引用: 王敏昭。1995第二版。土壤分析手冊。中華土壤肥料學會。211-217。 呂金河、洪哲裕。2012。基礎統計在STATISTICA上的實踐與應用(初版)。新北市:史丹索特。 林汶鑫、盧建銘、何兆銓、郭寶錚。2008。以不同變異程度之近紅外光光譜模擬數據評估不同變數選取法之穩定性。作物、環境與生物資訊。5(2):127-137。 高宏麟。2003。簡易型近紅外光分光光度計之整合及在土壤總氮檢測之研究。碩士論文。台中:國立中興大學生物產業機電工程學系碩士班。 許柏偉。2001。近紅外線光譜檢測青椒生長狀況之研究。碩士論文。台中:國立中興大學農業機械工程學研究所碩士班。 鄭仕君。2010。不同前處理對近紅外線光譜建立糙米蛋白質含量預測模式影響之研究。碩士論文。台中:國立中興大學農藝學系碩士班。 郭泓裕、朱戩良、江志峰、吳懷國。1995。臺灣地區土壤有機質含量及有機資材之施用狀況。有機質肥料合理施用技術研討會專刊。台灣,台中。72-83。 陳志文、林群富、黃泰綸。2007。近紅外光譜儀之開發及應用。科儀新知。29(2): 80-90。 魚住純(葉詩鈴編譯)。1984。近紅外線分析與日本食品及飼料工業品質管制自動化。食品工業,16(11):13-26。 劉士綸。2010。利用近紅外光譜技術進行台灣烏龍茶快速分析與鑑別之研究。博士論文。台中:國立中興大學食品暨應用生物科技學系博士班。 蔡兆胤。2000。近紅外線檢測之應用─小番茄糖度檢測單元之研製。碩士論文。屏東:國立屏東科技大學機械工程系碩士班。 Arriaga, F. J. and B. Lowery. 2003. Soil physical properties and crop productivity of an eroded soil amended with cattle manure. Soil Sci. 168:888-899. Bohn, Hinrich. L., Brian L. McNeal and George A. O'Connor. 2001. Soil Chemistry, 3rd ed. p.155-171. John Wiley & Sons, Inc. Canada. Bartholomeus, H. M., M. E. Schaepman, L. Kooistra, A. Stevens, W. B. Hoogmoed and O. S. P. Spaargaren. 2008. Spectral reflectance based indices for soil organic carbon quantification. Geoderma. 145:28-36. Blance, M., J. Coello, I. Montoliu and M. A. Romero. 2001. Orthogonal signal correction in near infrared calibration. Anal Chim. Acta.434:125-132. Brereton, R. G. 2000. Introduction to multivariate calibration in analytical chemistry. Analyst. 125:2125-2154. Cambardella, C. A. and E. T. Elliott. 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56:777-783. Caquet, B., A. D. Grandcourt, A. T. M'bou, D. Epron, A. Kinana, L. S. André and T. Nouvellon. 2012. Soil carbon balance in a tropical grassland: Estimation of soil respiration and its partitioning using a semi-empirical model. Agric. For. Meteorol. 158-159:71-79. Chang, C.-W., D. A. Laird and C. R. Jr. Hurburgh. 2005. Influence of soil moisture on near-infrared reflectance spectroscopy measurement of soil properties. Soil Sci. 170(4):244-255. Clark R. N. and Roush T. L. 1984. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys Res. 89, 6329-6340. Conforti, M., A. Castrignanò, G. Robustelli, F. Scarciglia, M. Stelluti and G. Buttafuoco. 2015. Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena. 124:60-67. Conforti, M., G. Buttafuoco, A. P. Leone, P. P. C. Aucelli, G. Robustelli and F. Scarciglia. 2013. Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological. Catena. 110:44-58. Curran, P. J., J. L. Dungan and D. L. Peterson. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Remote Sens. Environ. 76:349-359. Dalal, R. C. and R. J. Henry. 1986. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 50:120-123. Erhart, E. and W. Hartl. 2003. Mulching with compost improves growth of blue spurce in Christmas tree plantations. Eur. J. Soil Biol. 39:149-156. Franzluebbers, A. J., E. M. Hons and D. A. Zuberer. 1995. Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sco. Soc. Am. J. 59: 460-466. Haider, K. and J. P. Martin. 1967. Synthesis and transformation of phenolic compounds by Epicoccum nigrum in relation to humic acid formation. Proc. Soil Sci. Am. 31:766-772. Haubrock, S. –N., S. Chabrillat, C. Lemmnitz and H. Kaufmann. 2008. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote Sens. 29(1):3-29 Ge, Y., C. L. S. Morgan and J. P. Ackerson. 2014. VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma. 221-222:61-69. Kooistra, L., J. Wanders, G. F. Epema, R. S. E. W. Leuven, R. Wehrens and L. M. C. Butdens. 2003. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Anal. Chim. Acta. 484:189-200. Kuang, B. and A. M. Mouazen. 2011. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci. 62:629-636. Kuang, B. and A. M. Mouazen. 2013. Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture. Biosyst. Eng. 114:249-258. Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123:1-22. Lesaignoux, A., S. Fabre and X. Briottet. 2013. Influence of soil moisture content on spectral reflectance of bare soils in the 0.4-14 μm domain. Int. J. Remote Sens. 34:2268-2285. Li, D., X. Chen, Z. Peng, S. Chen, W. Chen, L. Han and Y. Li. 2012. Prediction of soil organic matter content in a litchi orchard of South China using spectral indices. Soil Tillage Res. 123:78-86. Lu, P., L. Wang, Z. Niu, L. Li and W. Zhang. 2013. Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery. J. Geochem. Explor. 132:26-33. Malley, D. F., L. Yesmin, D. Wray and S. Edwards. 1999. Application of near-infrared spectroscopy in analysis of soil mineral nutrients. Commun. Soil Sci. Plant Anal. 30(7-8):999-1012. McDowell, M. L., G. L. Bruland, J. L. Deenik, S. Grunwald and N. M. Knox. 2012. Soil total carbon analysis in Hawaiian soils with visible, near-infrared and nid-infrared diffuse reflectance spectroscopy. Geoderma. 189-190:312-320. Melero, S., J. C. R. Porras, J. F. Herencia and E. Madejon. 2006. Chemical and biochemical properties in silty loam soil under conventional and organic management. Soil Tillage Res. 90:162-170. Minasny, B., A. B. McBratney, V. Bellon-Maurel, J.-M. Roger, A. Gobrecht, L. Ferrand and S. Joalland. 2011. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma. 167-168:118-124 Nelson, D. E. and L. E. Sommers. 1982. 2nd Ed. Total carbon, organic carbon and organic matter. In A. L. Page (Ed.), R. H. Miller and D. R. Keeney, Methods of soil analysis part 2. Chemical and microbiological properties (pp.539-579). U.S.A.: A. S. A., S. S. S. A. and C. S. S. A. Notica, M., L. Kooistra, M. Bachmann, A. Müller, M. Powell and S. Weel. 2011. Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma. 167-168:295-302. Notica, M., A. Stevens, C. Noon and B. V. Wesemael. 2013. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma. 199:37-42. Notica, M., A. Stevens, G. Toth, P. Panagos, B. V. Wesemael and L. Montanarella. 2014. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 68:337-347. Osborne, B. G., Fearn, T. and Hindle, P. H. 1993. Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.).New York: Longman Scientific & Technical. Peng, J., H. Shen, S. W. He and J. S. Wu. 2013. Soil moisture retrieving using hyperspectral data with the application of wavelet analysis. Environ. Earth Sci. 69:279-288. Piccolo, A. and J. S. C. Mbagwu. 1990. Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant Soil. 123:27-37. Planet, W. G. 1970. Some comments on reflectance measurements of wet soils. Remote Sens. Environ. 1:127-129. Rienzi, E. A., B. Mijatovic, T. G. Mueller, C. J. Matocha, F. J. Sikora and A. Castrignano. 2013. Prediction of soil organic carbon under varying moisture levels using reflectance spectroscopy. Soil Sci. Soc. Am. J. 78:958-967. Rodionov, A., S. Pätzold, G. Welp, R. C. Pallares, L. Damerow and W. Amelung. 2014. Sensing of soil organic carbon using visible and near-infrared spectroscopy at variable moisture and surface roughness. Soil Sci. Soc. Am. J. 78:949-957. Rodionov, A., S. Pätzold, G. Welp, R. Pude and W. Amelung. 2016. Proximal field Vis-NIR spectroscopy of soil organic carbon: A solution to clear obstacle related to vegetation and straw cover. Soil Tillage Res. 163:89-98. Shepherd, K. D. and M. G. Walsh. 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 66:988-998. Stevens, A., T. Udelhoven, A. Denis, B. Tychon, R. Lioy, L. Hoffmann and B. V. Wesemael. 2010. Measuring soil organic carbon in croplands at regional using airborne imaging spectroscopy. Geoderma. 158:32-45. Stenberg, B. 2010. Effect of soil sample pretreatments and standardized rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma. 158:15-22. Sparks, D. L. 2003. Environmental soil chemistry (2nd ed.). U. S. A. Elsevier. Tester, C. F. 1990. Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci. Soc. Am. J. 54:827-831. Tian, Y., J. Zhang, X. Yao, W. Cao and Y. Zhu. 2013. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma. 202-203:161-170. Tiarks, A. E., A. P. Mazurak and L. Chesnin. 1974. Physical and chemical properties of soil associated with heavy applications of manure from cattle feedlots. Soil Sci. Soc. Am. J. 38:826-830. Tisdall, J.M. and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33:141-163. Viscarra Rossel, R. A., D. J. J. Walvoort, A. B. McBratney, L. J. Janik and J. O. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131:59-75. Wang, J., T. He, C. Lv, Y. Chen and W. Jian. 2010. Mapping soil organic matter based on land degradation spectral response units Hyperion images. Int. J. Appl. Earth Obs. Geoinf. 12:171-180. Wu, C.-Y., A. R. Jacobson, M. Laba and P. C. Baveye. 2009. Alleviating moisture content effects on the visible near-infrared diffuse-reflectance sensing of soils. Soil Sci. 174(8):456-465. Xiaofei, A., L. Minzan, Z. Lihua and S. Hong. 2015. Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen content using a NIRS- based portable detector. Comput. Electron. Agric. 112:47-53 Zebarth, B. J., G. H. Neilsen, E. Hogue and D. Neilsen. 1999. Influence of organic waste amendments on selected soil physical and chemical properties. Can. J. Soil Sci. 79:501-504. Zhang, L. and R. Zhang. 2017. Effect of soil moisture and particle size on soil total phosphorus estimation by near-infrared spectroscopy. Pol. J. Environ. Stud. 26(1):395-401. Zornoza, R., C. Guerrero, J. M. -Solera, K. M. Scow, V. Arcenegui and J. M. -Beneyto. 2008. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Boil. Biochem. 40:1923-1930.
摘要: 
本試驗使用來自國立中興大學土壤調查試驗中心、桃園、苗栗、台南、高雄、台東農業改良場已分析過之土壤樣品,向各單位取得已測定之土壤樣品土壤有機質(Soil organic matter, SOM)含量,將3g土壤樣品經壓片機壓成錠狀,分別加入0、0.25、0.50和1.00mL的四組水分含量,待水分平衡後以ASD FieldSpec3光譜儀測定波長範圍350-2500nm之土壤反射光譜,再利用向前逐步迴歸法建立土壤反射光譜與SOM含量及水分含量之預測模型。結果顯示,樣品組d (水分含量>20%)預測SOM的能力最佳,顯示土壤再加濕可以提高預測SOM含量之能力,土壤反射光譜也可用於鑑別土壤之乾濕程度。且將光譜經Continuum removal (CR)轉換以及依波形將樣品分作Type A與Type B樣品組皆可提高預測SOM含量與土壤水分含量之準確度。對於非建模樣品之預測準確度雖有降低,但選取重要波長作為預測模型之方式能修正先前高估SOM含量之現象。綜合以上研究結果,現若有一未知土壤樣品,毋須經過將土壤風乾(或烘乾)等步驟,只要經壓片機壓成錠狀,測定波長範圍350-2500nm之土壤反射光譜,就能鑑別土壤之乾濕程度,並使用較濕之土壤樣品(或將土壤再加濕)做SOM含量的快速檢測。

Soil organic matter (SOM) contents had been estimated in soil samples, which were collected from Soil Survey and Testing Center in National Chung Hsing University, Agriculture Research and Extension Station in Taoyuan, Miaoli, Tainan, Kaohsiung and Taitung District. This study added 0, 0.25, 0.50 and 1.00 mL water in soil samples separately. After water content balanced, spectral reflectance (350-2500 nm) was scanned with an ASD FieldSpec3 spectrometer. Then, the prediction models were developed with forward stepwise regression. Experimental results indicated that the wettest sample set (soil moisture content >20%) had the best prediction ability. Visible and near infrared spectroscopy (Vis-NIRS) reflectance can determine soil moisture content well. Spectral continuum removal (CR) and sample classification as Type A and Type B sample set both can optimize prediction ability. Although the prediction accuracy of extra samples reduced, but the method of choosing important wavelength could improve it. In summary, if we have soil sample, we can get its soil moisture content only by the reflectance data. Then, applying on appropriate model to soil reflectance data, consequently, we can get accurate prediction data of SOM content without soil pretreatment process (e.g. soil air-dried or oven-dried).
URI: http://hdl.handle.net/11455/96251
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-17起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7103039021-1.pdf2.95 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.