Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96262
標題: Fabrication and Application of Three-dimensional Polycarbonate Nanofibers for Surface-enhanced Raman Scattering (SERS) Measurements
三維式聚碳酸酯奈米纖維之製備與其在表面增強拉曼散射測量之應用
作者: Balamurugan Murugesan
巴拉姆
關鍵字: 聚碳酸酯奈米纖維;銀奈米粒子;聚乙烯吡咯烷酮;苯丙氨酸;銀膠體溶液;咖啡環陣列和氧化鋅微粒;polycarbonate nanofiber;silver nanoparticles;polyvinylpyrrolidone;phenylalanine;silver colloidal solution;coffee-ring array;zinc oxide microparticles
引用: Chapter 1 (1) Skoog, D. A.; Holler, F. J.; Crouch, S. R. P. of I. A. Principles of Instrumental Analysis, 7th ed. 1983, 152. (2) Herrmann, R.; Onkelinx, C. Quantities and Units in Clinical Chemistry: Nebulizer and Flame Properties in Flame Emission and Absorption Spectrometry. Clin. Chim. Acta 1985, 148, 277–285. (3) Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature. 1928, 31, 501–502. (4) Harada, Y.; Asakura, T. Radiation Forces on a Dielectric Sphere in the Rayleigh Scattering Regime. Opt. Commun. 1996, 124, 529–541. (5) Chase, B. A New Generation of Raman Instrumentation. Appl. Spectrosc. 1994, 48, 14–19. (6) Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M. Raman Spectroscopy of Individual Single-Walled Carbon Nanotubes from Various Sources. J. Phys. Chem. B 2005, 109, 10567–10573. (7) Petrak, B.; Djeu, N.; Muller, A. Coherent Anti-Stokes Raman Scattering in a High-Finesse Microcavity. Opt. Express 2014, 22, 21999. (8) Schultz, Z. D.; Marr, J. M.; Wang, H. Tip Enhanced Raman Scattering: Plasmonic Enhancements for Nanoscale Chemical Analysis. Nanophotonics. 2014, 3, 91–104. (9) Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on the Fabrication of Substrates for Surface Enhanced Raman Spectroscopy and Their Applications in Analytical Chemistry. Anal. Chim. Acta 2011, 693, 7–25. (10) Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. (11) Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. (12) Ko, H.; Chang, S.; Tsukruk, V. V. Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules. ACS Nano 2009, 3, 181–188. (13) Kneipp, J.; Wittig, B.; Bohr, H.; Kneipp, K. Surface-Enhanced Raman Scattering: A New Optical Probe in Molecular Biophysics and Biomedicine. Theor. Chem. Acc. 2010, 125, 319–327. (14) Aroca, R. F.; Goulet, P. J. G.; Dos Santos, D. S.; Alvarez-Puebla, R. a.; Oliveira, O. N. Silver Nanowire Layer-by-Layer Films as Substrates for Surface-Enhanced Raman Scattering. Anal. Chem. 2005, 77, 378–382. (15) Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Surface-Enhanced Raman Scattering and Biophysics. J. Phys. Condens. Matter 2002, 14, 597–624. (16) Morton, S. M.; Ewusi-Annan, E.; Jensen, L. Controlling the Non-Resonant Chemical Mechanism of SERS Using a Molecular Photoswitch. Phys. Chem. Chem. Phys. 2009, 11, 7424–7429. (17) Lombardi, J. R.; Birke, R. L. A Unified Approach to Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 5605–5617. (18) Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. On the Chemical Mechanism of Surface Enhanced Raman Scattering: Experiment and Theory. J. Chem. Phys. 1998, 108, 5013–5026. (19) Gao, X.; Davies, J. P.; Weaver, M. J. Test of Surface Selection Rules for Surface-Enhanced Raman Scattering: The Orientation of Adsorbed Benzene and Monosubstituted Benzenes on Gold. J. Phys. Chem. 1990, 94, 6858–6864. (20) Moskovits, M.; Suh, J. S. Conformation of Mono- and Dicarboxylic Acids Adsorbed on Silver Surfaces. J. Am. Chem. Soc. 1985, 107, 6826–6829. (21) Jarvis, R. M.; Brooker, A.; Goodacre, R. Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron Microscope with a Raman Spectroscopy Interface. Anal. Chem. 2004, 76, 5198–5202. (22) Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 2004, 16, 1151–1170. (23) Balamurugan, M.; Yang, J. Three-Dimensional Surface-Enhanced Raman Scattering Substrate Fabricated Using Chemical Decoration of Silver Nanoparticles on Electrospun Polycarbonate Nanofibers. Appl. Spectrosc. 2017, 71, 879–887. (24) Bao, Y.; Lai, C.; Zhu, Z.; Fong, H.; Jiang, C. SERS-Active Silver Nanoparticles on Electrospun Nanofibers Facilitated via Oxygen Plasma Etching. RSC Adv. 2013, 3, 8998–9004. (25) Tang, W.; Chase, D. B.; Rabolt, J. F. Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers via Polyelectrolyte Decoration - A 3D SERS Substrate. Anal. Chem. 2013, 85, 10702–10709. (26) Zhang, L.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C.; Fong, H. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 14433–14440. (27) He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano 2009, 3, 3993–4002. (28) Rajapandiyan, P.; Yang, J. Photochemical Method for Decoration of Silver Nanoparticles on Filter Paper Substrate for SERS Application. Journal of Raman Spectros. 2014, 45, 574–580. (29) Chen, J.-Y.; Yang, J.; Liou, Y.-C. M. Enhancement of Raman Scattering for Silver Nanoparticles Located on Electrolessly Roughened Silicon. Appl. Spectrosc. 2014, 68, 172–178. (30) Satheeshkumar, E.; Yang, J. Photochemical Decoration of Silver Nanoparticles on ZnO Nanowires as a Three-Dimensional Substrate for Surface-Enhanced Raman Scattering Measurement. J. Raman Spectrosc. 2014, 45, 407–413. (31) Zhang, J.; Fan, T.; Zhang, X.; Lai, C.; Zhu, Y. Three-Dimensional Multi-Walled Carbon Nanotube Arrays Coated by Gold-Sol as a Surface-Enhanced Raman Scattering Substrate. Appl. Opt. 2014, 53, 1159. (32) Zhao, Y.; Sun, L.; Xi, M.; Feng, Q.; Jiang, C.; Fong, H. Electrospun TiO 2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 5759–5767. (33) Tang, W.; Chase, D. B.; Rabolt, J. F. Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers via Polyelectrolyte Decoration - A 3D SERS Substrate. Anal. Chem. 2013, 85, 10702–10709. Chapter 2 (1) Kim, K.; Jang, H. J.; Shin, K. S. Ag Nanostructures Assembled on Magnetic Particles for Ready SERS-Based Detection of Dissolved Chemical Species. Analyst 2009, 134, 308–313. (2) Han, X. X.; Huang, G. G.; Zhao, B.; Ozaki, Y. Label-Free Highly Sensitive Detection of Proteins in Aqueous Solutions Using Surface-Enhanced Raman Scattering. Anal. Chem. 2009, 81, 3329–3333. (3) Jang, S. G.; Choi, D. G.; Heo, C. J.; Lee, S. Y.; Yang, S. M. Nanoscopic Ordered Voids and Metal Caps by Controlled Trapping of Colloidal Particles at Polymeric Film Surfaces. Adv. Mater. 2008, 20, 4862–4867. (4) Aroca, R. F.; Goulet, P. J. G.; Dos Santos, D. S.; Alvarez-Puebla, R. a.; Oliveira, O. N. Silver Nanowire Layer-by-Layer Films as Substrates for Surface-Enhanced Raman Scattering. Anal. Chem. 2005, 77, 378–382. (5) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. 1997, 78, 1667–1670. (6) Yoshida, K. I.; Itoh, T.; Biju, V.; Ishikawa, M.; Ozaki, Y. Experimental Evaluation of the Twofold Electromagnetic Enhancement Theory of Surface-Enhanced Resonance Raman Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 79, 085419. (7) Ansar, S. M.; Li, X.; Zou, S.; Zhang, D. Quantitative Comparison of Raman Activities, SERS Activities, and SERS Enhancement Factors of Organothiols: Implication to Chemical Enhancement. J. Phys. Chem. Lett. 2012, 3, 560–565. (8) Kim, N. J. Physical Origins of Chemical Enhancement of Surface-Enhanced Raman Spectroscopy on a Gold Nanoparticle-Coated Polymer. J. Phys. Chem. C 2010, 114, 13979–13984. (9) Cheng, M. L.; Yang, J. Seed-Mediated Growth Method for Electroless Deposition of AgNPs on Glass Substrates for Use in SERS Measurements. J. Raman Spectrosc. 2010, 41, 167–174. (10) Xu, P.; Mack, N. H.; Jeon, S. H.; Doom, S. K.; Han, X.; Wang, H. L. Facile Fabrication of Homogeneous 3D Silver Nanostructures on Gold-Supported Polyaniline Membranes as Promising SERS Substrates. Langmuir 2010, 26, 8882–8886. (11) Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2012, 22, 218–224. (12) Rajapandiyan, P.; Yang, J. Sensitive Cylindrical SERS Substrate Array for Rapid Microanalysis of Nucleobases. Anal. Chem. 2012, 84, 10277–10282. (13) Shanmukh, S.; Jones, L.; Driskell, J.; Zhao, Y.; Dluhy, R.; Tripp, R. A. Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate. Nano Lett. 2006, 6, 2630–2636. (14) Satheeshkumar, E.; Yang, J. Photochemical Decoration of Silver Nanoparticles on ZnO Nanowires as a Three-Dimensional Substrate for Surface-Enhanced Raman Scattering Measurement. J. Raman Spectrosc. 2014, 45, 407–413. (15) Yi, Z.; Yi, Y.; Luo, J.; Li, X.; Xu, X.; Jiang, X.; Yi, Y.; Tang, Y. Arrays of ZnO Nanorods Decorated with Au Nanoparticles as Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Melamine. Phys. B Condens. Matter 2014, 451, 58–62. (16) Tan, E. Z.; Yin, P. G.; You, T. T.; Wang, H.; Guo, L. Three Dimensional Design of Large-Scale TiO2nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Appl. Mater. Interfaces 2012, 4, 3432–3437. (17) Lee, S. Y.; Kim, S. H.; Kim, M. P.; Jeon, H. C.; Kang, H.; Kim, H. J.; Kim, B. J.; Yang, S. M. Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate. Chem. Mater. 2013, 25, 2421–2426. (18) Wang, X.; Xu, S.; Li, H.; Tao, J.; Zhao, B.; Xu, W. A Three-Dimensional Surface-Enhanced Raman Scattering Substrate: Au Nanoparticle Supramolecular Self-Assembly in Anodic Aluminum Oxide Template. J. Raman Spectrosc. 2012, 43, 459–463. (19) Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Chipara, A. C.; Ajayan, P. M.; Hafner, J. H. Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Adv. Mater. 2012, 24, 5261–5266. (20) Ko, H.; Chang, S.; Tsukruk, V. V. Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules. ACS Nano 2009, 3, 181–188. (21) Lee, C. H.; Tian, L.; Singamaneni, S. Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Appl. Mater. Interfaces 2010, 2, 3429–3435. (22) Rajapandiyan, P.; Yang, J. Photochemical Method for Decoration of Silver Nanoparticles on Filter Paper Substrate for SERS Application. J Raman Spectrosc. 2014, 45, 574–580. (23) He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano 2009, 3, 3993–4002. (24) Bao, Y.; Lai, C.; Zhu, Z.; Fong, H.; Jiang, C. SERS-Active Silver Nanoparticles on Electrospun Nanofibers Facilitated via Oxygen Plasma Etching. RSC Adv. 2013, 3, 8998–9004. (25) Zhao, Y.; Sun, L.; Xi, M.; Feng, Q.; Jiang, C.; Fong, H. Electrospun TiO2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 5759–5767. (26) Zhang, L.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C.; Fong, H. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 14433–14440. (27) Tang, W.; Chase, D. B.; Rabolt, J. F. Immobilization of Gold Nanorods onto Electrospun Polycaprolactone Fibers via Polyelectrolyte Decoration - A 3D SERS Substrate. Anal. Chem. 2013, 85, 10702–10709. (28) Patel, A. C.; Li, S.; Wang, C.; Zhang, W.; Wei, Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chem. Mater. 2007, 19, 1231–1238. (29) Formo, E.; Lee, E.; Campbell, D.; Xia, Y. Functionalization of Electrospun TiO 2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Lett. 2008, 8, 668–672. (30) Sill, T. J.; von Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials. 2008, 1, 1989–2006. (31) Yoo, H. S.; Kim, T. G.; Park, T. G. Surface-Functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery. Advanced Drug Delivery Reviews. 2009, 61 1033–1042. (32) Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable Electrospun Fibers for Drug Delivery. J. Control. Release 2003, 92, 227–231. (33) Rujitanaroj, P.O.; Pimpha, N.; Supaphol, P. Wound-Dressing Materials with Antibacterial Activity from Electrospun Gelatin Fiber Mats Containing Silver Nanoparticles. Polymer. 2008, 49, 4723–4732. (34) Li, W.-J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K. Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering. J. Biomed. Mater. Res. 2002, 60, 613–621. (35) Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering. Biomaterials 2003, 24, 2077–2082. (36) Han, G.; Guo, B.; Zhang, L.; Yang, B. Conductive Gold Films Assembled on Electrospun Poly(Methyl Methacrylate) Fibrous Mats. Adv. Mater. 2006, 18, 1709–1712. (37) Kim, G. M.; Wutzier, A.; Radusch, H. J.; Michler, G. H.; Simon, P.; Sperling, R. A.; Parak, W. J. One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning. Chem. Mater. 2005, 17, 4949–4957. (38) Wang, Y.; Yang, Q.; Shan, G.; Wang, C.; Du, J.; Wang, S.; Li, Y.; Chen, X.; Jing, X.; Wei, Y. Preparation of Silver Nanoparticles Dispersed in Polyacrylonitrile Nanofiber Film Spun by Electrospinning. Mater. Lett. 2005, 59, 3046–3049. (39) Wang, Y.; Li, Y.; Sun, G.; Zhang, G.; Liu, H.; Du, J.; Yang, S.; Bai, J.; Yang, Q. Fabrication of Au/PVP Nanofiber Composites by Electrospinning. J. Appl. Polym. Sci. 2007, 105, 3618–3622. (40) Kundu, S.; Gill, R. S.; Saraf, R. F. Electrospinning of PAH Nanofiber and Deposition of Au NPs for Nanodevice Fabrication. J. Phys. Chem. C 2011, 115, 15845–15852. (41) Lee, S. N.; Stolarski, V.; Letton, A.; Laane, J. Studies of Bisphenol-A-Polycarbonate Aging by Raman Difference Spectroscopy. J. Mol. Struct. 2000, 521, 19–23. (42) Sun, L; Thomas R.C.; Crooks, R.M.; Ricco. A.J.; Real-Time Analysis of Chemical Reactions Occuring at a Surface-Confined Organic Monolayer J.Am. Chem. Soc. 1992, 113, 8550-8552. (43) Lee, H. M.; Kim, M. S.; Kim, K. Surface-Enhanced Raman Scattering of Ortho- and Para-Mercaptophenols in Silver Sol. Vib. Spectrosc. 1994, 6, 205–214. (44) Marcus, Y. The Properties of Solvents; Wiley, 1999; Vol. 53. (45) Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters; CRC Press, 1991. Chapter 3 (1) Dadosh, T.; Sperling, J.; Bryant, G. W.; Breslow, R. Control of the Shape of the Raman Spectrum of a Single Molecule in a Silver Nanoparticle. ACS Nano 2009, 3, 1988–1994. (2) Yoshida, K. I.; Itoh, T.; Biju, V.; Ishikawa, M.; Ozaki, Y. Experimental Evaluation of the Twofold Electromagnetic Enhancement Theory of Surface-Enhanced Resonance Raman Scattering. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 79, 1–6. (3) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. 1997, 78, 1667–1670. (4) Wang, J.; Li, Y.; Wu, S.; Song, P.; Xia, L. Chemical Mechanism of Surface-Enhanced Raman Scattering via Charge Transfer in Fluorenone-Ag Complex. J. Phys. Condens. Matter 2016, 28, 21. (5) Maitani, M. M.; Ohlberg, D. A. A.; Li, Z.; Allara, D. L.; Stewart, D. R.; Williams, R. S. Study of SERS Chemical Enhancement Factors Using Buffer Layer Assisted Growth of Metal Nanoparticles on Self-Assembled Monolayers Study of SERS Chemical Enhancement Factors Using Buffer Layer Assisted Growth of Metal Nanoparticles on Self-Assembled Monola. J. Am. Chem. Soc. 2009, 131, 6310–6311. (6) Ansar, S. M.; Li, X.; Zou, S.; Zhang, D. Quantitative Comparison of Raman Activities, SERS Activities, and SERS Enhancement Factors of Organothiols: Implication to Chemical Enhancement. J. Phys. Chem. Lett. 2012, 3, 560–565. (7) Liu, Z.; Yan, Z.; Jia, L.; Song, P.; Mei, L.; Bai, L.; Liu, Y. Gold Nanoparticle Decorated Electrospun Nanofibers: A 3D Reproducible and Sensitive SERS Substrate. Appl. Surf. Sci. 2017, 403, 29–34. (8) Camposeo, A.; Spadaro, D.; Magrì, D.; Moffa, M.; Gucciardi, P. G.; Persano, L.; Maragò, O. M.; Pisignano, D. Surface-Enhanced Raman Spectroscopy in 3D Electrospun Nanofiber Mats Coated with Gold Nanorods. Anal. Bioanal. Chem. 2016, 408, 1357–1364. (9) Yang, T.; Yang, H.; Zhen, S. J.; Huang, C. Z. Hydrogen-Bond-Mediated in Situ Fabrication of AgNPs/Agar/PAN Electrospun Nanofibers as Reproducible SERS Substrates. ACS Appl. Mater. Interfaces 2015, 7, 1586–1594. (10) Yang, H.; Huang, C. Z. Polymethacrylic Acid–facilitated Nanofiber Matrix Loading Ag Nanoparticles for SERS Measurements. RSC Adv. 2014, 4, 38783–38790. (11) Balamurugan, M.; Yang, J. Three-Dimensional Surface-Enhanced Raman Scattering Substrate Fabricated Using Chemical Decoration of Silver Nanoparticles on Electrospun Polycarbonate Nanofibers. Appl. Spectrosc. 2017, 71, 879–887. (12) Rajapandiyan, P.; Yang, J. Photochemical Method for Decoration of Silver Nanoparticles on Filter Paper Substrate for SERS Application. J. Raman Spectrosc. 2014, 45, 574–580. (13) Cheng, M. L.; Tsai, B. C.; Yang, J. Silver Nanoparticle-Treated Filter Paper as a Highly Sensitive Surface-Enhanced Raman Scattering (SERS) Substrate for Detection of Tyrosine in Aqueous Solution. Anal. Chim. Acta 2011, 708, 89–96. (14) Cheng, M. L.; Yang, J. Seed-Mediated Growth Method for Electroless Deposition of AgNPs on Glass Substrates for Use in SERS Measurements. J. Raman Spectrosc. 2010, 41, 167–174. (15) Babich, E.; Redkov, A.; Reduto, I.; Lipovskii, A. Self-Assembled Silver–Gold Nanoisland Films on Glass for SERS Applications. Phys. Status Solidi - Rapid Res. Lett. 2018, 12, 1–6. (16) Alula, M. T.; Yang, J. Photochemical Decoration of Silver Nanoparticles on Magnetic Microspheres as Substrates for the Detection of Adenine by Surface-Enhanced Raman Scattering. Anal. Chim. Acta 2014, 812, 114–120. (17) Rajapandiyan, P.; Yang, J. Sensitive Cylindrical SERS Substrate Array for Rapid Microanalysis of Nucleobases. Anal. Chem. 2012, 84, 10277–10282. (18) Satheeshkumar, E.; Yang, J. Photochemical Decoration of Silver Nanoparticles on ZnO Nanowires as a Three-Dimensional Substrate for Surface-Enhanced Raman Scattering Measurement. J. Raman Spectrosc. 2014, 45, 407–413. (19) Alula, M. T.; Yang, J. Photochemical Decoration of Gold Nanoparticles on Polymer Stabilized Magnetic Microspheres for Determination of Adenine by Surface-Enhanced Raman Spectroscopy. Microchim. Acta 2015, 182, 1017–1024. (20) Izak-Nau, E.; Huk, A.; Reidy, B.; Uggerud, H.; Vadset, M.; Eiden, S.; Voetz, M.; Himly, M.; Duschl, A.; Dusinska, M.; et al. Impact of Storage Conditions and Storage Time on Silver Nanoparticles' Physicochemical Properties and Implications for Their Biological Effects. RSC Adv. 2015, 5, 84172–84185. (21) Pinto, V. V.; Ferreira, M. J.; Silva, R.; Santos, H. A.; Silva, F.; Pereira, C. M. Long Time Effect on the Stability of Silver Nanoparticles in Aqueous Medium: Effect of the Synthesis and Storage Conditions. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 364, 19–25. (22) Fraire, J. C.; Sueldo Ocello, V. N.; Allende, L. G.; Veglia, A. V.; Coronado, E. A. Toward the Design of Highly Stable Small Colloidal SERS Substrates with Supramolecular Host-Guest Interactions for Ultrasensitive Detection. J. Phys. Chem. C 2015, 119, 8876–8888. (23) Kiefer, W.; Mazzolini, A. P.; Stoddart, P. R. Recent Advances in Linear and Nonlinear Raman Spectroscopy I. J. Raman Spectrosc. 2007, 38, 1538–1553. (24) Leopold, N.; Chiş, V.; Mircescu, N. E.; Marişca, O. T.; Buja, O. M.; Leopold, L. F.; Socaciu, C.; Braicu, C.; Irimie, A.; Berindan-Neagoe, I. One Step Synthesis of SERS Active Colloidal Gold Nanoparticles by Reduction with Polyethylene Glycol. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 436, 133–138. (25) Huang, G. G.; Hossain, M. K.; Han, X. X.; Ozaki, Y. A Novel Reversed Reporting Agent Method for Surface-Enhanced Raman Scattering; Highly Sensitive Detection of Glutathione in Aqueous Solutions. Analyst 2009, 134, 2468-2474. (26) Mengesha, Z. T.; Yang, J. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect. Anal. Chem. 2016, 88, 10908–10915. (27) Yang, L.; Liu, H.; Ma, Y.; Liu, J. Solvent-Induced Hot Spot Switch on Silver Nanorod Enhanced Raman Spectroscopy. Analyst 2012, 137, 1547-1549. (28) Hossain, M. K.; Willmott, G. R.; Etchegoin, P. G.; Blaikie, R. J.; Tallon, J. L. Tunable SERS Using Gold Nanoaggregates on an Elastomeric Substrate. Nanoscale 2013, 5, 8945-8950. (29) Lamberti, A.; Virga, A.; Angelini, A.; Ricci, A.; Descrovi, E.; Cocuzza, M.; Giorgis, F. Metal–elastomer Nanostructures for Tunable SERS and Easy Microfluidic Integration. RSC Adv. 2015, 5, 4404–4410. (30) Lin, C. C.; Chang, C. W. AuNPs@mesoSiO2 composites for SERS Detection of DTNB Molecule. Biosens. Bioelectron. 2014, 51, 297–303. (31) Chen, R.; Zhang, L.; Li, X.; Ong, L.; Soe, Y. G.; Sinsua, N.; Gras, S. L.; Tabor, R. F.; Wang, X.; Shen, W. Trace Analysis and Chemical Identification on Cellulose Nanofibers-Textured SERS Substrates Using the 'Coffee Ring' Effect. ACS Sensors 2017, 2, 1060–1067. (32) Xu, J.; Du, J.; Jing, C.; Zhang, Y.; Cui, J. Facile Detection of Polycyclic Aromatic Hydrocarbons by a Surface-Enhanced Raman Scattering Sensor Based on the Au Coffee Ring Effect. ACS Appl. Mater. Interfaces 2014, 6, 6891–6897. (33) Wang, W.; Yin, Y.; Tan, Z.; Liu, J. Coffee-Ring Effect-Based Simultaneous SERS Substrate Fabrication and Analyte Enrichment for Trace Analysis. Nanoscale 2014, 6, 9588-9593. (34) Deegan, R. D. Pattern Formation in Drying Drops. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 2000, 61, 475–485. (35) Kaneda, M.; Hyakuta, K.; Takao, Y.; Ishizuka, H.; Fukai, J. Internal Flow in Polymer Solution Droplets Deposited on a Lyophobic Surface during a Receding Process Internal Flow in Polymer Solution Droplets Deposited on a Lyophobic Surface during a Receding Process. Langmuir 2008, 24, 9102–9109. (36) Smalyukh, I. I.; Zribi, O. V.; Butler, J. C.; Lavrentovich, O. D.; Wong, G. C. L. Structure and Dynamics of Liquid Crystalline Pattern Formation in Drying Droplets of DNA. Phys. Rev. Lett. 2006, 96, 1–4. (37) Gorr, H. M.; Zueger, J. M.; Barnard, J. A. Lysozyme Pattern Formation in Evaporating Drops. Langmuir 2012, 28, 4039–4042. (38) Wang, W.; Yin, Y.; Tan, Z.; Liu, J. Nanoscale Substrate Fabrication and Analyte Enrichment For. Nanoscale 2014, 6, 9588–9593. (39) Majumder, M.; Rendall, C. S.; Eukel, J. A.; Wang, J. Y. L.; Behabtu, N.; Pint, C. L.; Liu, T. Y.; Orbaek, A. W.; Mirri, F.; Nam, J.; et al. Overcoming the 'Coffee-Stain' Effect by Compositional Marangoni-Flow-Assisted Drop-Drying. J. Phys. Chem. B 2012, 116, 6536–6542. (40) Fischer, B. J. Particle Convection in an Evaporating Colloidal Droplet. Langmuir 2002, 18, 60–67. (41) Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997, 389, 827–829. (42) Hu, H.; Larson, R. G. Analysis of the Microfluid Flow in an Evaporating Sessile Droplet. Langmuir 2005, 21, 3963–3971. (43) Kang, S. J.; Vandadi, V.; Felske, J. D.; Masoud, H. Alternative Mechanism for Coffee-Ring Deposition Based on Active Role of Free Surface. Phys. Rev. E 2016, 94, 1–8. (44) Gorr, H. M.; Zueger, J. M.; Barnard, J. A. Characteristic Size for Onset of Coffee-Ring Effect in Evaporating Lysozyme-Water Solution Droplets. J. Phys. Chem. B 2012, 116, 12213–12220. (45) Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Contact Line Deposits in an Evaporating Drop. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 2000, 62, 756–765. (46) Note, T. Influence of Surface Roughness on Contact Angle and Wettability. 1936, 7,1–3. (47) Marmur, A. Solid-Surface Characterization by Wetting. Annu. Rev. Mater. Res. 2009, 39, 473–489. (48) Lin, S. Y.; Yang, K. C.; Chen, L. J. Effect of Surface Hydrophobicity on Critical Pinning Concentration of Nanoparticles to Trigger the Coffee Ring Formation during the Evaporation Process of Sessile Drops of Nanofluids. J. Phys. Chem. C 2015, 119, 3050–3059. (49) Talbot, E. L.; Yow, H. N.; Yang, L.; Berson, A.; Biggs, S. R.; Bain, C. D. Printing Small Dots from Large Drops. ACS Appl. Mater. Interfaces 2015, 7, 3782–3790. (50) Hu, H.; Larson, R. G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090–7094. (51) Al Hafid, N.; Christodoulou, J. Phenylketonuria: A Review of Current and Future Treatments. Transl. Pediatr. 2015, 4, 304–317. (52) Brown, C. S.; Lichter-Konecki, U. Phenylketonuria (PKU): A Problem Solved? Mol. Genet. Metab. Reports 2016, 6, 8–12. (53) Ho, G.; Christodoulou, J. Phenylketonuria: Translating Research into Novel Therapies. Transl. pedatrics 2014, 3, 49–62. (54) Brückner, H.; Haasmann, S.; Friedrich, A. Quantification of D-Amino Acids in Human Urine Using GC-MS and HPLC. Amino Acids 1994, 6, 205–211. (55) E. Lund, K. Vollmond, B. O. Phenylalanine Levels in Blood and Urine in Newborn Infants, Measured by Guthrie Test. Acta path. microbiol.scandinav 1963, 64, 299–304. (56) Haber, J.; Sokolov, K. Synthesis of Stable Citrate-Capped Silver Nanoprisms. Langmuir 2017, 33, 10525–10530. (57) Zhang, Y.; Guo, J.; Xu, D.; Sun, Y.; Yan, F. One-Pot Synthesis and Purification of Ultralong Silver Nanowires for Flexible Transparent Conductive Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 25465–25473. (58) Yang, L. C.; Lai, Y. S.; Tsai, C. M.; Kong, Y. T.; Lee, C. I.; Huang, C. L. One-Pot Synthesis of Monodispersed Silver Nanodecahedra with Optimal SERS Activities Using Seedless Photo-Assisted Citrate Reduction Method. J. Phys. Chem. C 2012, 116, 24292–24300. (59) Pillai, Z.; Kamat, P. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? J. Phys. Chem. B 2004, 108, 945–951. (60) Sun, Y. G.; Xia, Y. N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. science 2002, 298, 2176–2179. (61) Tejamaya, M.; Römer, I.; Merrifield, R. C.; Lead, J. R. Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media. Environ. Sci. Technol. 2012, 46, 7011–7017. (62) Pucetaite, M.; Velicka, M.; Tamosaityte, S.; Sablinskas, V. Application of SERS Spectroscopy for Detection of Trace Components in Urinary Deposits. Plasmon. Biol. Med. X 2014, 8957, 895708. (63) Ahmad, R.; Tripathy, N.; Ahn, M.-S.; Hahn, Y.-B. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid. Sci. Rep. 2017, 7, 46475. (64) Pucetaite, M.; Velicka, M.; Pilipavicius, J.; Beganskiene, A.; Ceponkus, J.; Sablinskas, V. Uric Acid Detection by Means of SERS Spectroscopy on Dried Ag Colloidal Drops. J. Raman Spectrosc. 2016, 47, 681–686. (65) Baldree, L. A.; Stapleton, F. B. Uric Acid Metabolism in Children. Pediatr. Clin. North Am. 1990, 37, 391–418. (66) Park, K.; Inouye, E.; Asaka, A. Plasma and Urine Uric Acid Levels : Estimates and Correlation. Jpn. J. Hum. Genet. 1980, 25, 193–202. (67) Madzharova, F.; Heiner, Z.; Kneipp, J. Surface Enhanced Hyper-Raman Scattering of the Amino Acids Tryptophan, Histidine, Phenylalanine, and Tyrosine. J. Phys. Chem. C 2017, 121, 1235–1242.
摘要: 
Three-dimensional surface-enhanced Raman scattering (SERS) substrate was prepared by chemical decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofiber (PCNFs). The fabricated SERS substrates exhibit a multi-dimensional structure to effectively increasing the density of AgNPs in a unit area, which leads to significant improvement of sensitivity in SERS detection. Initially, PCNFs were prepared uniformly by electrospinning technique. There are a few parameters were systematically examined during preparation PCNFs and characterized with scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, solvent ratio, applied voltage, and rotating speed. Using optimized condition, the bead-free PCNFs with a diameter in the range of 200-400 nm were produced successfully. The prepared PCNFs material used to decorate silver nanoparticles (AgNPs) on it. To increase the efficiency in decoration of AgNPs, PCNFs is subjected to pre-treatment with some organic solvent. The selection of organic solvent based on Hildebrand solubility (HSB) parameter, which is for away from HSB values of PCNFs. Among these solvent, Methanol pre-treatment enormously increased loading capacity AgNPs on PCNFs. The prepared SERS substrates probed with pHTP and its enhancement factor at 107, which is a one order of magnitude larger than conventional substrates. On the other hand, roughened PCNFs were used as substrate to control the formation colloidal coffee-ring in size. In this method, initially prepared the polyvinylpyrrolidone (PVP) stabilized silver colloidal (AgC) solution mixed with analytes. Following deposition of the solution on solid substrate with rough surface, coffee rings were formed after evaporation of solvent. The formed coffee-ring were optimized by changing the concentration of silver colloidal mixing ratio probe molecules, PVP concentration, and substrate roughness. Based on optimized parameter, method to determine phenylalanine (phe) level in urine for rapid screening of phenylketonuria (PKU) disorder, under the strong chemical interference in uric acid. Zinc oxide micro particles (ZnOMPs) was used to remove strong interference of uric acid in urine. Using the optimized conditions, developed method was highly feasible for rapid determination of Phe in real samples.

本研究探討利用聚碳酸酯奈米纖維修飾銀奈米粒子,製備三維式表面增強拉曼散射(Surface-enhanced Raman Scattering, SERS)基板。製備的SERS基板具有多維結構,可以有效地增加單位面積中銀奈米粒的密度,有效增加SERS檢測分子的靈敏度,另外,更進一步應用聚碳酸酯奈米纖維應用到膠體咖啡環測量法上,有效控制膠體咖啡環的大小,進一步提升測量的應用性。
  研究首先以電紡絲技術,製備聚碳酸酯奈米纖維, 再經由有系統地探討各種製備參數對形成奈米纖維的影響,更進一步利用掃描電子顯微鏡確認不同參數製備出的聚碳酸酯奈米纖維型態。探討的參數包括聚碳酸酯溶液濃度、溶劑比、施加電壓和轉速。使以最佳化製備條件製備出的無節點的聚碳酸酯奈米纖維,其直徑約在200 - 400 nm範圍內。為了修飾高密度銀奈米粒在製備的聚碳酸酯奈米纖維上已做為SERS的感測基板,聚碳酸酯奈米纖維經過適合的有機溶劑預處理,以提升先為鬆散度,以及改變纖維表面性質,本研究利用溶解度參數做為參考,經實驗測試發現甲醇的預處理可以有效提升修飾效率,且不會損傷聚碳酸酯奈米纖維的結構,極大地增加了聚碳酸酯奈米纖維的銀修飾密度。用para-Hydroxyl thiophenol (pHTP)測試製備的SERS基材效果,其增強因子可達107。
研究也針對利用聚碳酸酯奈米纖維基板具有高粗糙性的特性,提出利用粗糙度控制咖啡環(Coffee ring)的尺寸,提升SERS的感測性與在現性。研究爭,首先製備與分析物混合的聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)穩定的銀膠體(Silver colloidal, AgC)溶液,再滴在不同粗糙度的聚碳酸酯奈米纖維基板,經溶劑揮發後,可形成咖啡環,實驗中更進一步探討銀膠體與樣品溶液比例、PVP濃度、聚碳酸酯奈米纖維粗糙度等,優化測量條件。開發的方法並成功的進一步應用到尿液中苯丙氨酸(Phenylalanine)定量測量上。
URI: http://hdl.handle.net/11455/96262
Rights: 同意授權瀏覽/列印電子全文服務,2021-07-30起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat
nchu-107-8101051007-1.pdf2.49 MBAdobe PDFView/Open
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.