Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96265
標題: (1) Sequential Yb(OTf)3 Catalyzed One-Pot Three-Component Thia-Michael Addition (2) p-Toluenesulfonic Acid Catalyzed N-Formylation of N-Formylimide with Amine in Water
(1)利用三氟甲磺酸鐿催化進行一鍋化之硫-麥克爾加成反應 (2)利用對甲苯磺酸於水相催化N-甲醯亞胺和胺類進行甲醯化之反應
作者: Hsin‐Yi Huang
黃馨誼
關鍵字: 硫-麥克爾加成反應;甲醯亞胺;甲醯化之反應;thia-Michael addition;N-Formylimide;N-Formylation
引用: 題目一 (1)(a) Yin, C.; Huo, F.; Zhang, J.; Martinez-Manez, R.; Yang, Y.; Lv, H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032-6059 (b) Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. Chem. Mater. 2014, 26, 724-744. (2) (a) Tandon, V. K.; Yadav, D. B.; Singh, R. V.; Vaish, M.; Chaturvedi, A. K.; Shukla, P. K. Bioorg. Med. Chem. Lett. 2005, 15, 3463-3466 (b) Tandon, V. K.; Singh, R. V.; Yadav, D. B. Bioorg. Med. Chem. Lett. 2004, 14, 2901-2904 (c) Phippen, C. B. W.; McErlean, C. S. P. Tetrahedron Letters 2011, 52, 1490-1492. (3)Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807-8864. (4)(a) Azizi, N.; Khajeh-Amiri, A.; Ghafuri, H.; Bolourtchian, M. Green Chem. Lett. Rev. 2009, 2, 43-46 (b) Firouzabadi, H.; Iranpoor, N.; Abbasi, M. Adv. Synth. Catal. 2009, 351, 755-766 (c) Li, R.-T.; Ge, Z.-M.; Zhao, Y.; Cheng, T.-M. Synlett 2007, 2007, 1529-1532 (d) Nicponski, D.; Marchi, J. Synthesis 2014, 46, 1725-1730. (5)(a) Lin, Y.-m.; Lu, G.-p.; Cai, C.; Yi, W.-b. RSC Adv. 2015, 5, 27107-27111 (b) Prabakaran, K.; Gund, M.; Kim, T.; Jeong, E.; Oh, C.; Nawaz Khan, F.-R.; Jin, J. Chem. Pap. 2011, 65, 707-713 (c) Chen, W.; Shi, L. Catal. Commun. 2008, 9, 1079-1081 (d) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141-2144. (6)(a) Schneider, C. C.; Manarin, F. v.; Panatieri, R. B.; Barros, O. S. R.; Zeni, G. J. Braz. Chem. Soc. 2010, 21, 2088-2092 (b) Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2010, 49, 4290-4293 (c) Kumar, A.; Ahmad, I.; Sudershan Rao, M. J. Sulfur Chem. 2009, 30, 570-577 (d) Chen, C.-T.; Lin, Y.-D.; Liu, C.-Y. Tetrahedron 2009, 65, 10470-10476 (e) Kumar, A.; Akanksha Tetrahedron 2007, 63, 11086-11092 (f) Chu, C.-M.; Huang, W.-J.; Lu, C.; Wu, P.; Liu, J.-T.; Yao, C.-F. Tetrahedron Lett. 2006, 47, 7375-7380. (7)(a) Sharma, G.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2008, 49, 4272-4275 (b) Banerjee, S.; Das, J.; Alvarez, R. P.; Santra, S. New J. Chem. 2010, 34, 302-306 (c) Kumarraja, M.; Pitchumani, K. J. Mol. Catal. A: Chem. 2006, 256, 138-142. (8)(a) Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2003, 59, 2417-2421 (b) Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem. 2003, 68, 7098-7100. (9) (a) Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 4971-4974 (b) Li, Y.-Z.; Wang, Y.; Du, G.-F.; Zhang, H.-Y.; Yang, H.-L.; He, L. Asian J. Org. Chem. 2015, 4, 327-332 (c) Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Kuo, C.-W.; Lu, C.; Liu, J.-T.; Yao, C.-F. Tetrahedron 2007, 63, 1863-1871. (10)Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454-457. (11)Firouzabadi, H.; Iranpoor, N.; Gorginpour, F.; Samadi, A. Eur. J. Org. Chem. 2015, 2914-2920. (12)Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76, 4371-4378. (13)Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv. Synth. Catal. 2010, 352, 119-124. (14)Zhao, J.; Tao, C.; Lv, A.; Zhao, N.; Yang, S.; Liu, X.; Zhou, J.; Liu, W. Synlett 2011, 134-138. (15)Zhao, P.; Yin, H.; Gao, H.; Xi, C. J. Org. Chem. 2013, 78, 5001-5006. (16)(a) Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16, 1212-1215 (b) Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. Org. Lett. 2013, 15, 2594-2597 (c) Li, Y.; Pu, J.; Jiang, X. Org. Lett. 2014, 16, 2692-2695 (d) Hou, C.; He, Q.; Yang, C. Org. Lett. 2014, 16, 5040-5043. (17)Guo, J.-R.; Huang, H.-Y.; Yan, Y.-L.; Liang, C.-F. Asian J. Org. Chem. 2018, 7, 179-188. (18)Dhiman, R. S.; Kluger, R. Org. Biomol. Chem. 2010, 8, 2006-2008. (19)Khatik, G. L.; Sharma, G.; Kumar, R.; Chakraborti, A. K. Tetrahedron 2007, 63, 1200-1210. (20)Zhao, S.-Y.; An, Y.-L.; Deng, Y.-X.; Zhang, W. Synthesis 2015, 47, 1581-1592. (21) (a) Lee, S. H.; Shen, G. N.; Jung, Y. S.; Lee, S. J.; Chung, J. Y.; Kim, H. S.; Xu, Y.; Choi, Y.; Lee, J. W.; Ha, N. C.; Song, G. Y.; Park, B. J. Oncogene 2010, 29, 4576-4587 (b) Ibis, C.; Tuyun, A. F.; Ozsoy-Gunes, Z.; Bahar, H.; Stasevych, M. V.; Musyanovych, R. Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Eur. J. Med. Chem. 2011, 46, 5861-5867 (c) Hu, Z. P.; Zhuang, Z.; Liao, W. W. J. Org. Chem. 2015, 80, 4627-4637. (22)Lam, T. M.; Lee, C.; Katardjieff, K.; Otsuki, T. Bioorg. Med. Chem. Lett. 2010, 20, 7226-7229. (23)Uskoković, M.; Grethe, G.; Iacobelli, J.; Wenner, W. J. Org. Chem. 1965, 30, 3111-3114. (24)Yoshida, M.; Ohno, Y.; Hara, S. Tetrahedron Lett. 2010, 51, 5134-5136. (25)Tajima, T.; Kurihara, H.; Fuchigami, T. J. Am. Chem. Soc. 2007, 129, 6680-6681. (26)Alt, I.; Rohse, P.; Plietker, B. ACS Catal. 2013, 3, 3002-3005. (27)Winkler, M.; Raupp, Y. S.; Köhl, L. A. M.; Wagner, H. E.; Meier, M. A. R. Macromolecules 2014, 47, 2842-2846. (28)Khatik, G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433-2436. (29)Gee, W. J.; Hierold, J.; MacLellan, J. G.; Andrews, P. C.; Lupton, D. W.; Junk, P. C. Eur. J. Inorg. Chem. 2011, 3755-3760 (30)Kondo, T.; Morisaki, Y.; Uenoyama, S.-y.; Wada, K.; Mitsudo, T.-a. J. Am. Chem. Soc. 1999, 121, 8657-8658. (31)Bonollo, S.; Lanari, D.; Longo, J. M.; Vaccaro, L. Green Chem. 2012, 14, 164-169. (32)Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. J. Med. Chem. 2015, 58, 6678-6696. (33)Liu, L.; Breslow, R. Bioorg. Med. Chem. 2004, 12, 3277-3287. (34)Xi, W.; Krieger, M.; Kloxin, C. J.; Bowman, C. N. Chem. Commmun. 2013, 49, 4504-4506. (35)Kowalczyk, R.; Nowak, A. E.; Skarżewski, J. Tetrahedron: Asymmetry 2013, 24, 505-514. (36)Meindertsma, A. F.; Pollard, M. M.; Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. Tetrahedron: Asymmetry 2007, 18, 2849-2858. (37)Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417-10430. (38)Chen, Y.; Liu, Z.; Shi, C. Synlett 2008, 2008, 1734-1736. 題目二 (1) (a) Behrman, E. J.; Hillenbrand, E. L. J. Chem. Res., Synop . 2008, 170-172. (b) Petit, G. R.; Kalnins, M. V.; Liu, T. M. H.; Thomas, E. G.; Parent, K. J. Org. Chem. 1961, 26, 2563-2566. (c) Huebner, C. F.; Scholz, C. R. J. Am. Chem. Soc. 1951, 73, 2089-2094. (2) Chapman, R. S. L.; Lawrence, R.; Williams, J. M. J.; Bull, S. D. Org. Lett. 2017, 19, 4908-4911. (3) Pasqua, A. E.; Thomas, L. H.; Crawford, J. J.; Marquez, R. Tetrahedron 2011, 67, 7611-7617. (4) Thompson, Q. E. J. Am. Chem. Soc. 1951, 73, 5914-5915. (5) Xu, L.; Zhang, S.; Trudell, M. L. Chem. Commun. 2004, 0, 1668-1669. (6) Evans, D. A.; Nagorny, P.; Xu, R. Org. Lett. 2006, 8, 5669-5671. (7) Martinelli, F.; Palmieri, A.; Petrini, M. Eur. J. Org. Chem. 2010, 5085-5089. (8) Gledhill, A. P.; McCall, C. J.; Threadgill, M. D. J. Org. Chem. 1986, 51, 3196-3201. (9) Huang, W.; Wang, M.; Yue, H. Synthesis 2008, 1342-1344. (10) Itoh, A.; Kodama, T.; Inagaki, S.; Masaki, Y. Chem. Lett. 2000, 9, 542-543. (11) Itoh, A.; Nakayama, H. Synlett. 2008, 675-678. (12) Padwa, A.; Carlsen, P. H. J.; Tremper, A. J. Am. Chem. Soc. 1978, 100, 4481-4490. (13) Kashima, C.; Arao, H. J. Heterocycl. Chem. 1991, 28, 805-806. (14) (a) Klinge, M.; Cheng, H.; Zabriskie, T. M.; Vederas, J. C. J. Chem. Soc., Chem. Commun. 1994, 1379-1380 (b) Kantlehner, W.; Fischer, P.; Kuge, W.; Mohring, E.; Bredereck, H. Liebigs Ann. Chem. 1978, 512-527. (15) Lin, Y.-I.; Lang Jr., S. A. Synthesis 1980, 119-121. (16) Schnyder, A.; Indolese, A. F. J. Org. Chem. 2002, 67, 594-597. (17) Niu, Z.; Lin, S.; Dong, Z.; Sun, H.; Liang, F.; Zhang, J. Org. Biomol. Chem. 2013, 11, 2460-2465. (18) Sambaiah, M.; Gudipati, R.; Shiva Kumar, K.; Yennam, S.; Behera, M. Tetrahedron Lett. 2016, 57, 403-406. (19) (a) Gerack, C. J.; McElwee-White, L. Molecules 2014, 19, 7689-7713. (b) Patre, R. E.; Mal, S.; Nilkanth, P. R.; Ghorai, S. K.; Deshpande, S. H.; El Qacemi, M.; Smejkal, T.; Pal, S.; Manjunath, B. N. Chem. Commun. 2017, 53, 2382-2385. (20) Dine, T. M.; Evans, D.; Rouden, J.; Blanchet, J. Chem. Eur. J. 2016, 22, 5894-5898. (21) Jackson, A.; Meth-Cohn, O. J. Chem. Soc. Chem. Commun. 1995, 1319. (22) Han, Y.; Cai, L. Tetrahedron Lett. 1997, 38, 5423-5426. (23) Kondo, T.; Kotachi, S.; Tsuji, Y.; Watanabe, Y.; Mitsud, T.-A. Organometallics 1997, 16, 2562-2570. (24) Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2009, 74, 6358-6361. (25) Pace, V.; de la Vega-Hernandez, K.; Urban, E.; Langer, T. Org. Lett. 2016, 18, 2750-2753. (26) Sheehan, J. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 1154-1158. (27) (a) Baudequin, C.; Chaturvedi, D.; Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 2623-2629. (b) Wen, Y.; Xiong, Y.; Chang, L.; Huang, J.; Liu, X. and Fen, X. J. Org. Chem. 2007, 72, 7715–7719. (28) Downie, I.M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Tetrahedron 1993, 49, 4015-4034. (29) Bianchini, G.; La Sorella, G.; Canever, N.; Scarso, A.; Strukul, G. Chem. Commun. 2013, 49, 5322-5324. (30) Berry, M. B.; Blagg, J.; Craig, D.; Willis, M. C. Synlett. 1992, 659-660. (31) Liliana, B.-F.; Andrea, O.-P.; Diego, G.-S. J. Org. Chem. 2014, 79, 4544-4552. (32) Nirmala, M.; Prakash, G.; Viswanathamurthi, P.; Malecki, J. G. J. Mol. Catal. A: Chem. 2015, 403, 15-26. (33) Wu, J.-W.; Wu, Y.-D.; Dai, J.-J.; Xu, H.-J. Adv. Synth. Catal. 2014, 356, 2429-2436. (34) Sonawane, R. B.; Rasal, N. K.; Jagtap, S. V. Org. Lett. 2017, 19, 2078-2081. (35) Sheng, H.; Zeng, R.; Wang, W.; Luo, S.; Feng, Y.; Liu, J.; Chen, W.; Zhu, M.; Guo, Q. Adv. Synth. Catal. 2017, 359, 302-313. (36) Nguyen, T. B.; Sorres, J.; Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2012, 14, 3202-3205. (37) (a) Rao, S. N.; Chandra Mohan, D.; Adimurthy, S. RSC Adv. 2015, 5, 95313-95317 (b) Durgaiah, C.; Naresh, M.; Swamy, P.; Srujana, K.; Rammurthy, B.; Narender, N. Catal. Commun. 2016, 81, 29-32. (38) Cossy, J.; Cochet, T.; Bellosta, V.; Greiner, A.; Roche, D. Synlett. 2011, 1920-1922. (39) (a) Hosseini-Sarvari, M.; Sharghi, H. J. Org. Chem. 2006, 71, 6652-6654 (b) Karimi, B.; Mansouri, F.; Vali, H. ChemPlusChem 2015, 80, 1750-1759 (c) Taheri, S.; Veisi, H.; Hekmati, M. New J. Chem. 2017, 41, 5075-5081 (d) Kazemi, S.; Mobinikhaledi, A.; Zendehdel, M. Chin. Chem. Lett. 2017, 28, 1767-1772. (40) (a) Muthukur Bhojegowd, M. R.; Nizam, A.; Pasha, M. A. Chin. J. Catal. 2010, 31, 518-520. (b) Habibi, D.; Nasrollahzadeh, M.; Sahebekhtiari, H. J. Mol. Catal. A: Chem. 2013, 378, 148-155. (c) Aleiwi, B. A.; Mitachi, K.; Kurosu, M. Tetrahedron Lett. 2013, 54, 2077-2081. (d) Brahmachari, G.; Laskar, S. Tetrahedron Lett. 2010, 51, 2319-2322. (41) (a) Majumdar, S.; De, J.; Hossain, J.; Basak, A. Tetrahedron Lett. 2013, 54, 262-266. (b) Shirini, F.; Seddighi, M.; Mamaghani, M. RSC Adv. 2014, 4, 50631-50638. (42) Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. Tetrahedron Lett. 2000, 41, 9149-9151. (43) Karami, B.; Farahi, M.; Pam, F. Tetrahedron Lett. 2014, 55, 6292-6296. (44) Batuta, S.; Begum, N. A. Synth. Commun. 2017, 137-147. (45) Zhao, T. X.; Zhai, G. W.; Liang, J.; Li, P.; Hu, X. B.; Wu, Y. T. Chem. Commun. 2017, 53, 8046-8049. (46) Ortega, N.; Richter. C.; Glorius, F. Org. Lett. 2013, 15, 1776-1779. (47) Tanaka, S.; Minato, T.; Ito, E.; Hara, M.; Kim, Y.; Yamamoto, Y.; Asao, N. Chem. Eur. J. 2013, 19, 11832-11836. (48) Chakraborty, S.; Gellrich, U.; Diskin-Posner, Y.; Leitus, G.; Avram, L.; Milstein, D. Angew. Chem. Int. Ed. Engl. 2017, 56, 4229-4233. (49) Berger, G.; Gelbcke, M.; Cauët, E.; Luhmer, M.; Nève, J.; Dufrasne, F. Tetrahedron Lett. 2013, 54, 545-548. (50) Lin, Y.-I.; Jennings, M. N.; Sliskovic, D. R.; Fields, T. L.; Lang Jr., S. A. Synthesis 1984, 946-947. (51) Dineen, T. A.; Zajac, M. A.; Myers, A. G. J. Am. Chem. Soc. 2006, 128, 16406-16409. (52) Yang, F.-L.; Zhu, X.; Rao, D.-K.; Cao, X.-N.; Li, K.; Xu, Y.; Hao, X.-Q.; Song, M.-P. RSC Adv. 2016, 6, 37093-37098. (53) Nageswara Rao, S.; Reddy, N. N. K.; Samanta, S.; Adimurthy, S. J. Org. Chem. 2017, 82, 13632-13642. (54) Ray, R.; Hazari, A.; Chandra. S.; Maiti, D.; Lahiri, G. K. Chem. Eur. J. 2018, 24, 1067-1071. (55) Jamatia, R.; Gupta, A.; Pal, A. K. ACS Sustain Chem Eng. 2017, 5, 7604-7612. (56) Gupton, J. T.; Colon, C.; Harrison, C. R.; Lizzi, M. J.; Polk, D. E. J. Org. Chem. 1980, 45, 4522-4524. (57) Rao, S. N.; Mohan, D. C.; Adimurthy, S. Org. Lett. 2013, 15, 1496-1499. (58) Neochoritis, C. G.; Stotani, S.; Mishra, B.; Domling, A. Org. Lett. 2015, 17, 2002-2005. (59) Chen, Z.; Cao, Y.; Tian, Z.; Zhou, X.; Xu, W.; Yang, J.; Teng, H. Tetrahedron Lett. 2017, 58, 2166-2170. (60) Goldeman, W.; Nasulewicz-Goldeman, A. Bioorg. Med. Chem. Lett. 2014, 24, 3475-3479. (61) Wang, Z.; Bi, X.; Liang, Y.; Liao, P.; Dong, D. Chem. Commun. 2014, 50, 3976-3978.
摘要: 
In the first part of this thesis, we report the three-component one-pot reaction of thia-Michael additions by using Yb(OTf)3. Compared with traditional work, thia-Michael addition comes from commercially available thiols and α,β-unsaturated compounds in alkaline condition, however, the starting material of thiols have some disadvantages, including smelly odor and easily oxidized to disulfide bond. In order to improve this situation, the reactions conducted under organic halides conditions have been reported. Herein, we report a new synthetic method that produces carbon-sulfur bonds from thiolate salt, organic halides and α,β-unsaturated compounds in mild condition. The three-component one-pot reaction of thia-Michael additions are using potassium thioacetate as the thiol source for nucleophilic substitution reaction, followed by Yb(OTf)3-catalyzed sequential S-deacetylation and thia-Michael addition. This entire route of the Yb(OTf)3 catalyzed multicomponent reactions are operational simplicity, good yield of products and use of relatively low or nontoxic reagents.
  The second part of the thesis, we have developed a new synthetic method for N-formylation of amines in water. Compared with the literature, we performed this reaction under metal- and gas-free conditions and prevented using high equivalent reagents from making the large scale of chemical wastes. The strategy was focused on N-formylation of amines with N-formylimides, which was prepared from amidines under p-toluenesulfonic acid catalyzed conditions. Furthermore, the N-formylation of N-formylimide has a good chemoseletivity on amino functional group. Additionally, the starting material of benzamide can be recovered after the entire reactions. Therefore, this synthetic method for N-formylation in water by using N-formylimide as an N-formylating reagent was an environmentally friendly approach.

本篇論文第一部分是利用三氟甲磺酸鐿在多分子組合一鍋化條件下進行硫-麥克爾加成反應。文獻中指出傳統利用市售可得之硫醇進行硫-麥克爾加成反應的策略大都為強鹼條件,但在此強鹼條件下硫醇容易氧化形成雙硫鍵的副產物,而且在使用中硫醇常具有使人不能忍受之刺鼻性異味。為了改善此問題,化學家們提出利用多樣性的有機鹵化物與含硫試劑反應取代傳統直接使用硫醇的方法。對此,我們也提出一套新的建立碳硫鍵之策略,利用硫代乙酸鉀、有機鹵化物、α,β-不飽和化合物在三氟甲磺酸鐿催化下進行硫-麥克爾加成反應。而催化量三氟甲磺酸鐿在此條件下可連續進行去硫乙醯基以及活化α,β-不飽和化合物幫助進行加成反應。整體上此策略具有操作方便、減少副產物形成以及避免使用昂貴的過渡金屬等優點,為一良好建立碳硫鍵之方法。最後,我們也將此開發方法應用在合成三個具有藥物活性的化合物,證實此方法的廣泛應用性。
  本篇論文第二部分是提出新穎製備甲醯亞胺之方法,並以此甲醯亞胺作為甲醯化試劑與多樣性胺類進行轉甲醯胺反應。先前的文獻中大多是以金屬與氣體在高溫下進行甲醯化反應或是以二甲基甲醯胺、甲酸等做為甲醯化試劑,但這些方法皆須高當量的試劑且造成過多化學廢棄物。因此本實驗室設計利用對甲苯磺酸與脒類化合物在水相形成高產率之甲醯亞胺化合物,接著同樣在水相中利用此甲醯亞胺作為提供甲醯基的載體,並具有化學選擇性只針對胺類化合物進行甲醯化,且反應最後可回收醯胺類起始物。同時,我們也探討利用一鍋化方法進行甲醯胺化反應,有效的合成甲醯基化合物。此策略可在水相快速且方便製備甲醯基化合物又不會產生過多化學廢棄物,是我們目前致力於邁向發展綠色化學方法之目標。
URI: http://hdl.handle.net/11455/96265
Rights: 同意授權瀏覽/列印電子全文服務,2021-07-24起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105051082-1.pdf22.88 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.