Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96269
標題: Palladium-Catalyzed Phosphination or Amination Reaction through C-H Bond Functionalization on Biphenyl Bearing Amido-substituent as Directing Group
以聯苯上醯胺基當成指向基配合鈀金屬化合物進行聯苯碳-氫鍵活化及後續磷酸化或胺化反應
作者: I-Hsiang Kao
高翊翔
關鍵字: 碳-氫鍵活化反應;碳-氫鍵官能化反應;指向基團;醯胺;二級氧化磷基;鈀;咔唑;C-H activation;C-H functionalization;Directing group;Acetamide;Secondary phosphine oxide;Palladium;Carbazole
引用: 1.Quin, L. D., A Guide to Organophosphorus Chemistry. John Wiley and Sons, New York, 2000(Chapter 3). 2.Tolman, C. A., Chem. Rev. 1977, 77, 313-348. 3.Tolman, C. A., J. Am. Chem. Soc. 1970, 92, 2953-2956. 4.Bajgar, J., Adv. Clin. Chem. 2004, 38, 151-216. 5.Shaikh, T. M.; Weng, C.-M.; Hong, F.-E., Coord. Chem. Rev. 2012, 256, 771-803. 6.Ackermann, L., Isr. J. Chem. 2010, 50, 652-663. 7.Dubrovina Natalia, V.; Börner, A., Angew. Chem. Int. Ed. 2004, 43, 5883-5886. 8.Williams, R. H.; Hamilton, L. A., J. Am. Chem. Soc. 1952, 74, 5418-5420. 9.Jung, L.-Y.; Tsai, S.-H.; Hong, F.-E., Organometallics 2009, 28, 6044-6053. 10.Hu, D.-F.; Weng, C.-M.; Hong, F.-E., Organometallics 2011, 30, 1139-1147. 11.Chang, Y.-Y.; Hong, F.-E., Tetrahedron 2013, 69, 2327-2335. 12.Chang, T.-W.; Ho, P.-Y.; Mao, K.-C.; Hong, F.-E., Dalton Transactions 2015, 44, 17129-17142. 13.Chang, Y.-C.; Lee, Y.-C.; Chang, M.-F.; Hong, F.-E., J. Organomet. Chem. 2016, 808, 23-33. 14.Hu, C.-Y.; Chen, Y.-Q.; Lin, G.-Y.; Huang, M.-K.; Chang, Y.-C.; Hong, F.-E., Eur. J. Inorg. Chem. 2016, 2016, 3131-3142. 15.Michaelis, A.; Kaehne, R., Ber. Dtsch. Chem. Ges. 1898, 31, 1048-1055. 16.Arbuzov, A. E., J. Russ. Phys. Chem. Soc. 1906, 38, 687. 17.Bhattacharya, A. K.; Thyagarajan, G., Chem. Rev. 1981, 81, 415-430. 18.Gaumont, A.-C.; M. Brown, J.; B. Hursthouse, M.; J. Coles, S., Chem. Commun. 1999, 63-64. 19.Baillie, C.; Xiao, J., Curr. Org. Chem. 2003, 7, 477-514. 20.Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y., Chem. Eur. J. 2006, 12, 3636-3646. 21.Kalek, M.; Stawinski, J., Organometallics 2008, 27, 5876-5888. 22.Kalek, M.; Jezowska, M.; Stawinski, J., Adv. Synth. Catal. 2009, 351, 3207-3216. 23.Tappe, F. M. J.; Trepohl, V. T.; Oestreich, M., Synthesis 2010, 2010, 3037-3062. 24.Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L., Chem. Rev. 2011, 111, 7981-8006. 25.Kuninobu, Y.; Yoshida, T.; Takai, K., J. Org. Chem. 2011, 76, 7370-7376. 26.Deal, E. L.; Petit, C.; Montchamp, J.-L., Org. Lett. 2011, 13, 3270-3273. 27.Zhang, B.; Daniliuc, C. G.; Studer, A., Org. Lett. 2014, 16, 250-253. 28.Hu, G.; Chen, W.; Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y., J. Org. Chem. 2016, 81, 1704-1711. 29.Chang, Y.-C.; Yuan, P.-T.; Hong, F.-E., Eur. J. Org. Chem. 2017, 2017, 2441-2450. 30.Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T., Synthesis 1981, 1981, 56-57. 31.Hou, C.; Ren, Y.; Lang, R.; Hu, X.; Xia, C.; Li, F., Chem. Commun. 2012, 48, 5181-5183. 32.Hong, G.; Mao, D.; Wu, S.; Wang, L., J. Org. Chem. 2014, 79, 10629-10635. 33.Crabtree, R. H., Chem. Rev. 1985, 85, 245-269. 34.Ritleng, V.; Sirlin, C.; Pfeffer, M., Chem. Rev. 2002, 102, 1731-1770. 35.Cheng, C.; Hartwig, J. F., Science 2014, 343, 853. 36.Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J., Chem. Soc. Rev. 2016, 45, 2900-2936. 37.Hartwig, J. F., Nature 2008, 455, 314. 38.Lyons, T. W.; Sanford, M. S., Chem. Rev. 2010, 110, 1147-1169. 39.Jiao, J.; Murakami, K.; Itami, K., ACS Catal. 2016, 6, 610-633. 40.He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q., Chem. Rev. 2017, 117, 8754-8786. 41.Kim, D.-S.; Park, W.-J.; Jun, C.-H., Chem. Rev. 2017, 117, 8977-9015. 42.Catellani, M.; Frignani, F.; Rangoni, A., Angew. Chem. Int. Ed. 1997, 36, 119-122. 43.Catellani, M., Synlett 2003, 0298-0313. 44.Faccini, F.; Motti, E.; Catellani, M., J. Am. Chem. Soc. 2004, 126, 78-79. 45.Catellani, M.; Motti, E.; Della Ca', N., Acc. Chem. Res. 2008, 41, 1512-1522. 46.Chiusoli, G. P.; Catellani, M.; Costa, M.; Motti, E.; Della Ca', N.; Maestri, G., Coord. Chem. Rev. 2010, 254, 456-469. 47.Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M., Acc. Chem. Res. 2016, 49, 1389-1400. 48.Li, B. J.; Tian, S. L.; Fang, Z.; Shi, Z. J., Angew. Chem. Int. Ed. Engl. 2008, 47, 1115-1118. 49.Daugulis, O.; Do, H.-Q.; Shabashov, D., Acc. Chem. Res. 2009, 42, 1074-1086. 50.Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q., Acc. Chem. Res. 2012, 45, 788-802. 51.Neufeldt, S. R.; Sanford, M. S., Acc. Chem. Res. 2012, 45, 936-946. 52.Zhang, F.; Spring, D. R., Chem. Soc. Rev. 2014, 43, 6906-6919. 53.Zaitsev, V. G.; Daugulis, O., J. Am. Chem. Soc. 2005, 127, 4156-4157. 54.Tsang, W. C. P.; Zheng, N.; Buchwald, S. L., J. Am. Chem. Soc. 2005, 127, 14560-14561. 55.Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S., J. Am. Chem. Soc. 2005, 127, 7330-7331. 56.Deprez, N. R.; Sanford, M. S., J. Am. Chem. Soc. 2009, 131, 11234-11241. 57.Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S., J. Am. Chem. Soc. 2011, 133, 18566-18569. 58.Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q., J. Am. Chem. Soc. 2007, 129, 3510-3511. 59.Chiong, H. A.; Pham, Q.-N.; Daugulis, O., J. Am. Chem. Soc. 2007, 129, 9879-9884. 60.Cornella, J.; Righi, M.; Larrosa, I., Angew. Chem. Int. Ed. Engl. 2011, 50, 9429-9432. 61.Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L., J. Am. Chem. Soc. 2010, 132, 468-469. 62.Zhao, X.; Yeung, C. S.; Dong, V. M., J. Am. Chem. Soc. 2010, 132, 5837-5844. 63.Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q., J. Am. Chem. Soc. 2013, 135, 7567-7571. 64.Xu, H.-J.; Lu, Y.; Farmer, M. E.; Wang, H.-W.; Zhao, D.; Kang, Y.-S.; Sun, W.-Y.; Yu, J.-Q., J. Am. Chem. Soc. 2017, 139, 2200-2203. 65.Shi, B. F.; Maugel, N.; Zhang, Y. H.; Yu, J. Q., Angew. Chem. Int. Ed. Engl. 2008, 47, 4882-4886. 66.Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q., J. Am. Chem. Soc. 2010, 132, 460-461. 67.Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q., Science 2010, 327, 315. 68.Engle, K. M.; Wang, D.-H.; Yu, J.-Q., J. Am. Chem. Soc. 2010, 132, 14137-14151. 69.Wang, P.; Farmer, M. E.; Yu, J. Q., Angew. Chem. Int. Ed. Engl. 2017, 56, 5125-5129. 70.Graebe, C.; Glaser, C., Ber. Dtsch. Chem. Ges. 1872, 5, 12. 71.Tian-Shung, W.; Meei-Ling, W.; Pei-Lin, W., Phytochemistry 1996, 43, 785-789. 72.Songsiang, U.; Thongthoom, T.; Boonyarat, C.; Yenjai, C., J. Nat. Prod. 2011, 74, 208-212. 73.Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J., Chem. Rev. 2012, 112, 3193-3328. 74.Morin, J.-F.; Leclerc, M., Macromolecules 2002, 35, 8413-8417. 75.Morin, J.-F.; Leclerc, M.; Adès, D.; Siove, A., Macromol. Rapid Commun. 2005, 26, 761-778. 76.Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M., J. Am. Chem. Soc. 2008, 130, 732-742. 77.Hu, L.; Li, Z.-r.; Li, Y.; Qu, J.; Ling, Y.-H.; Jiang, J.-d.; Boykin, D. W., J. Med. Chem. 2006, 49, 6273-6282. 78.Zhang, Y.; Tangadanchu, V. K. R.; Cheng, Y.; Yang, R.-G.; Lin, J.-M.; Zhou, C.-H., ACS Med. Chem. Lett. 2018, 9, 244-249. 79.Wakim, S.; Bouchard, J.; Simard, M.; Drolet, N.; Tao, Y.; Leclerc, M., Chem. Mater. 2004, 16, 4386-4388. 80.van Dijken, A.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.; Rothe, C.; Monkman, A.; Bach, I.; Stössel, P.; Brunner, K., J. Am. Chem. Soc. 2004, 126, 7718-7727. 81.Knölker, H.-J.; Fröhner, W.; Reddy, K. R., Synthesis 2002, 0557-0564. 82.Nozaki, K.; Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H. Z.; Fujiki, M.; Yamaguchi, S.; Tamao, K., Angew. Chem. Int. Ed. 2003, 42, 2051-2053. 83.Ackermann, L.; Althammer, A., Angew. Chem. Int. Ed. 2007, 46, 1627-1629. 84.Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H., Chem. Commun. 2007, 4516-4518. 85.Liu, Z.; Larock, R. C., Tetrahedron 2007, 63, 347-355. 86.Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker, H.-J., Synlett 2008, 1870-1876. 87.Liégault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K., J. Org. Chem. 2008, 73, 5022-5028. 88.Della Ca, N.; Motti, E.; Catellani, M., Adv. Synth. Catal. 2008, 350, 2513-2516. 89.Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H., J. Org. Chem. 2009, 74, 4720-4726. 90.Ackermann, L.; Althammer, A.; Mayer, P., Synthesis 2009, 3493-3503. 91.Gensch, T.; Rönnefahrt, M.; Czerwonka, R.; Jäger, A.; Kataeva, O.; Bauer, I.; Knölker, H. J., Chem. Eur. J. 2011, 18, 770-776. 92.Ruiz-Castillo, P.; Buchwald, S. L., Chem. Rev. 2016, 116, 12564-12649. 93.Kuwahara, A.; Nakano, K.; Nozaki, K., J. Org. Chem. 2005, 70, 413-419. 94.Liger, F.; Popowycz, F.; Besson, T.; Picot, L.; Galmarini, C. M.; Joseph, B., Biorg. Med. Chem. 2007, 15, 5615-5619. 95.Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L., J. Org. Chem. 2008, 73, 7603-7610. 96.Bedford, R. B.; Betham, M., J. Org. Chem. 2006, 71, 9403-9410. 97.Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J., J. Am. Chem. Soc. 2008, 130, 16184-16186. 98.Chen, Y.-C.; Chou, H.-M.; Kao, I.-H.; Chang, Y.-C.; Hong, F.-E., J. Organomet. Chem. 2017, 846, 389-396. 99.Yuan, P.-T.; Pai, C.-H.; Huang, S.-Z.; Hong, F.-E., Tetrahedron 2017, 73, 6786-6794. 100.Liang, Z.; Feng, R.; Yin, H.; Zhang, Y., Org. Lett. 2013, 15, 4544-4547. 101.Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q., J. Am. Chem. Soc. 2013, 135, 9322-9325. 102.Wasa, M.; Engle, K. M.; Yu, J.-Q., J. Am. Chem. Soc. 2009, 131, 9886-9887. 103.Hansch, C.; Leo, A.; Taft, R. W., Chem. Rev. 1991, 91, 165-195. 104.Walther, B., Coord. Chem. Rev. 1984, 60, 67-105. 105.Appleby, T.; Derek Woollins, J., Coord. Chem. Rev. 2002, 235, 121-140. 106.Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L., J. Am. Chem. Soc. 2003, 125, 6653-6655. 107.Willis, M. C.; Brace, G. N.; Holmes, I. P., Synthesis 2005, 3229-3234. 108.Zheng, N.; Anderson Kevin , W.; Huang, X.; Nguyen, H. N.; Buchwald Stephen , L., Angew. Chem. Int. Ed. 2007, 46, 7509-7512. 109.Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L., J. Am. Chem. Soc. 2008, 130, 13552-13554. 110.Mauger, C.; Mignani, G., Synth. Commun. 2006, 36, 1123-1129. 111.Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M., Org. Lett. 2003, 5, 835-837. 112.Mauger, C.; Mignani, G., Adv. Synth. Catal. 2005, 347, 773-782. 113.Surry David , S.; Buchwald Stephen , L., Angew. Chem. Int. Ed. 2008, 47, 6338-6361. 114.Lu, M.-Z.; Chen, X.-R.; Xu, H.; Dai, H.-X.; Yu, J.-Q., Chem. Sci. 2018, 9, 1311-1316. 115.Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q., J. Am. Chem. Soc. 2016, 138, 9269-9276. 116.Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.; Yu, J.-Q., Nature 2015, 519, 334-338. 117.Ding, Q.; Ye, S.; Cheng, G.; Wang, P.; Farmer, M. E.; Yu, J.-Q., J. Am. Chem. Soc. 2017, 139, 417-425. 118.Chen, S.-W.; Hong, F.-E., ChemistrySelect 2017, 2, 10232-10238. 119.Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q., J. Am. Chem. Soc. 2006, 128, 78-79. 120.Chen, X.; Goodhue, C. E.; Yu, J.-Q., J. Am. Chem. Soc. 2006, 128, 12634-12635. 121.Hull, K. L.; Sanford, M. S., J. Am. Chem. Soc. 2009, 131, 9651-9653. 122.Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C.-W.; Yao, C.-F., Org. Lett. 2017, 19, 54-57. 123.Stokes, B. J.; Jovanović, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G., J. Org. Chem. 2009, 74, 3225-3228. 124.Zuo, Z.; Liu, J.; Nan, J.; Fan, L.; Sun, W.; Wang, Y.; Luan, X., Angew. Chem. Int. Ed. 2015, 54, 15385-15389. 125.王靖諭,碩士論文,中興大學化學研究所,民國106年。
摘要: 
A palladium-catalyzed phosphination or amination reaction had been controlled by the amido-substituent in a biphenyl compound 1 as directing group. The distribution of products 3 and 4 was greatly depending on the electron-withdrawing or -donating capacity of the substituent on the amido-fragment of 1.
The carbazole derivatives 4 were obtained when the substituent is electron-withdrawing group. While the substituent is electron-donating group, it trends to form secondary phosphine oxides substituted products 3. Both 3_eaaa and 4_eaa were obtained while the substituent in 1 was -C6H5. The structure of 4_eaa was determined by single crystal X-ray diffraction methods.
Several derivatives of 1 with different substitutions on biphenyl were also screened. Similar results followed the trend were obtained and produced 3_ecaa, 3_ecfa, 3_effa, 4_eca and 4_ecf. The structures of all were determined by single crystal X-ray diffraction methods.
It was found that the type of reaction products could be greatly affected by the substituents on the amidobiphenyl compounds. A mechanism to account for the formations of products was proposed based on the experimental results.

本研究使用聯苯醯胺結構1為起始物,將其上的醯胺作為指向基團,在鈀金屬化合物的催化下,進行碳-磷鍵或碳-氮鍵的生成反應。嘗試改變醯胺上取代基的電子效應,包含推電子基如苯基與甲氧基或拉電子基如三氟甲基與五氟苯基,觀察對產物的影響。實驗中二級氧化磷基被緩慢滴加入反應中,此步驟對碳-磷鍵生成至關重大。總結此反應以金屬鈀化合物作為催化劑,進行磷酸化或胺化反應,可獲得碳-磷鍵產物3與咔唑產物4。
本研究發現指向基團醯胺上取代基的電子效應,對產物種類分布影響相當重要。當取代基為推電子基時,主要會形成咔唑產物4;而當取代基為拉電子基時,將使反應形成較多的碳-磷鍵產物3;當取代基為弱拉電子基如五氟苯時,將同時產生碳-磷鍵產物3與咔唑產物4。X-ray單晶繞射法證實4_eaa咔唑產物的晶體結構。利用同法,得到碳-磷鍵產物3_ecaa、3_ecfa、3_effa與4_eca、4_ecf咔唑產物的晶體結構。
本研究證實在磷苯醯胺化合物的醯胺上取代基,其電子效應會影響反應結果,形成兩種不同產物。本研究也根據實驗結果提出了生成產物3及4可能的反應機制。
URI: http://hdl.handle.net/11455/96269
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-31起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105051067-1.pdf10.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.