Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorMaw-Rong Leeen_US
dc.contributor.authorCheng-Chieh Huangen_US
dc.identifier.citation1. Field, J. A.; Johnson, C. A.; Rose, J. B., What is 'emerging'? Environmental Science & Technology 2006, 40 (23), 7105-7105. 2. Zuo, Y.; Zhang, K.; Lin, Y., Microwave-accelerated derivatization for the simultaneous gas chromatographic–mass spectrometric analysis of natural and synthetic estrogenic steroids. Journal of Chromatography A 2007, 1148 (2), 211-218. 3. Liu, R.; Zhou, J. L.; Wilding, A., Microwave-assisted extraction followed by gas chromatography–mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. Journal of Chromatography A 2004, 1038 (1), 19-26. 4. LaFleur, A. D.; Schug, K. A., A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems. Analytica Chimica Acta 2011, 696 (1), 6-26. 5. Fernández-Álvarez, P.; Le Noir, M.; Guieysse, B., Removal and destruction of endocrine disrupting contaminants by adsorption with molecularly imprinted polymers followed by simultaneous extraction and phototreatment. Journal of Hazardous Materials 2009, 163 (2), 1107-1112. 6. Peng, X.; Wang, Z.; Yang, C.; Chen, F.; Mai, B., Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography–mass spectrometry. Journal of Chromatography A 2006, 1116 (1), 51-56. 7. Grover, D. P.; Zhang, Z. L.; Readman, J. W.; Zhou, J. L., A comparison of three analytical techniques for the measurement of steroidal estrogens in environmental water samples. Talanta 2009, 78 (3), 1204-1210. 8. Fayad, P. B.; Prévost, M.; Sauvé, S., On-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry optimized for the analysis of steroid hormones in urban wastewaters. Talanta 2013, 115, 349-360. 9. López de Alda, M. J.; Barceló, D., Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by fully automated on-line solid-phase extraction–liquid chromatography–diode array detection. Journal of Chromatography A 2001, 911 (2), 203-210. 10. Isobe, T.; Shiraishi, H.; Yasuda, M.; Shinoda, A.; Suzuki, H.; Morita, M., Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2003, 984 (2), 195-202. 11. Viglino, L.; Aboulfadl, K.; Prévost, M.; Sauvé, S., Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS. Talanta 2008, 76 (5), 1088-1096. 12. Duong, C. N.; Ra, J. S.; Cho, J.; Kim, S. D.; Choi, H. K.; Park, J.-H.; Kim, K. W.; Inam, E.; Kim, S. D., Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 2010, 78 (3), 286-293. 13. Shareef, A.; Angove, M. J.; Wells, J. D., Optimization of silylation using N-methyl-N-(trimethylsilyl)-trifluoroacetamide, N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estrogens estrone and 17α-ethinylestradiol by gas chromatography–mass spectrometry. Journal of Chromatography A 2006, 1108 (1), 121-128. 14. Zhang, K.; Zuo, Y., Pitfalls and solution for simultaneous determination of estrone and 17α-ethinylestradiol by gas chromatography–mass spectrometry after derivatization with N,O-bis(trimethylsilyl)trifluoroacetamide. Analytica Chimica Acta 2005, 554 (1), 190-196. 15. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459. 16. Henderson, W.; Nickleson, B. K.; McCaffrey, L. J., Applications of electrospray mass spectrometry inorganometallic chemistry. Polyhedron 1998, 17 (25), 4291-4313. 17. Dass, C., Fundamentals of contemporary mass spectrometry. John Wiley & Sons 2007, Hoboken, NJ, U.S.A. 18. H-ESI Probe User Guide. Thermo Scientific 2009. 19. E. de Hoffmann, V. S., Mass Spectrometry Principles and Applications, 3rd Edition. John Wiley & Sons 2007, Hoboken, NJ, U.S.A. 20. Yost, R. A.; Enke, C. G., Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Analytical Chemistry 1979, 51 (12), 1251-1264. 21. Johnson, J. V.; Yost, R. A.; Kelley, P. E.; Bradford, D. C., Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Analytical Chemistry 1990, 62 (20), 2162-2172. 22. Watson, J. T.; Sparkman, O. D., Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th edition, . John Wiley & Sons 2007, Hoboken, NJ, U.S.A. 23. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. Journal of the American Chemical Society 1940, 62 (10), 2643-2657. 24. Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361 (6413), 645-647. 25. Matsui, J.; Miyoshi, Y.; Doblhoff-Dier, O.; Takeuchi, T., A molecularly imprinted synthetic polymer receptor selective for atrazine. Analytical Chemistry 1995, 67 (23), 4404-4408. 26. Cormack, P. A. G.; Mosbach, K., Molecular imprinting: recent developments and the road ahead. Reactive and Functional Polymers 1999, 41 (1), 115-124. 27. Andersson, L. I., Molecular imprinting: developments and applications in the analytical chemistry field. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 745 (1), 3-13. 28. Andersson, L. I., Molecular imprinting for drug bioanalysis. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 739 (1), 163-173. 29. Kim, H.; Spivak, D. A., New Insight into Modeling Non-Covalently Imprinted Polymers. Journal of the American Chemical Society 2003, 125 (37), 11269-11275. 30. Yan, H.; Row, K. H., Characteristic and synthetic approach of molecularly imprinted polymer. . International journal of molecular Sciences 2006, 7 (5), 155-178. 31. Sellergren, B., Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry. Elsevier: 2000: Vol. 23. 32. Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie International Edition 1995, 34 (17), 1812-1832. 33. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.; Vulfson, E. N., A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. Journal of the American Chemical Society 1995, 117 (27), 7105-7111. 34. Soares da Silva, M.; Viveiros, R.; Aguiar-Ricardo, A.; Bonifacio, V. D. B.; Casimiro, T., Supercritical fluid technology as a new strategy for the development of semi-covalent molecularly imprinted materials. RSC Advances 2012, 2 (12), 5075-5079. 35. Mosbach, K., Molecular imprinting. Trends in Biochemical Sciences 1994, 19 (1), 9-14. 36. Arvand, M.; Hashemi, M., Synthesis by precipitation polymerization of a molecularly imprinted polymer membrane for the potentiometric determination of sertraline in tablets and biological fluids. Journal of the Brazilian Chemical Society 2012, 23, 392-402. 37. González, G. P.; Hernando, P. F.; Alegría, J. S. D., A morphological study of molecularly imprinted polymers using the scanning electron microscope. Analytica Chimica Acta 2006, 557 (1), 179-183. 38. Sellergren, B.; Shea, K. J., Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. Journal of Chromatography A 1995, 690 (1), 29-39. 39. Tamayo, F. G.; Titirici, M. M.; Martin-Esteban, A.; Sellergren, B., Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Analytica Chimica Acta 2005, 542 (1), 38-46. 40. Zhang, L.; Cheng, G.; Fu, C., Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. Reactive and Functional Polymers 2003, 56 (3), 167-173. 41. Li, W.-H.; Stöver, H. D. H., Monodisperse Cross-Linked Core−Shell Polymer Microspheres by Precipitation Polymerization. Macromolecules 2000, 33 (12), 4354-4360. 42. Piacham, T.; Josell, Å.; Arwin, H.; Prachayasittikul, V.; Ye, L., Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Analytica Chimica Acta 2005, 536 (1), 191-196. 43. Bao, J.; Chen, W.; Liu, T.; Zhu, Y.; Jin, P.; Wang, L.; Liu, J.; Wei, Y.; Li, Y., Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation. ACS Nano 2007, 1 (4), 293-298. 44. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I., Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2 (5), 889-896. 45. Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L., A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 2009, 78 (2), 327-332. 46. Šafařı́ková, M.; Šafařı́k, I., Magnetic solid-phase extraction. Journal of Magnetism and Magnetic Materials 1999, 194 (1), 108-112. 47. Li, X.-S.; Zhu, G.-T.; Luo, Y.-B.; Yuan, B.-F.; Feng, Y.-Q., Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends in Analytical Chemistry 2013, 45, 233-247. 48. Bee, A.; Massart, R.; Neveu, S., Synthesis of very fine maghemite particles. Journal of Magnetism and Magnetic Materials 1995, 149 (1), 6-9. 49. Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L., Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity. Chemistry of Materials 2004, 16 (25), 5527-5534. 50. Kim, D. K.; Zhang, Y.; Voit, W.; Rao, K. V.; Muhammed, M., Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials 2001, 225 (1), 30-36. 51. Lee, J.; Isobe, T.; Senna, M., Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 109, 121-127. 52. Massart, R., Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics 1981, 17 (2), 1247-1248. 53. Blixt, A. M.; Andersson, G.; Stanciu, V.; Skubic, B.; Holmström, E.; Nordblad, P.; Hjörvarsson, B., Magnetic phase diagram of Fe0.82Ni0.18/V(001) superlattices. Journal of Magnetism and Magnetic Materials 2004, 280 (2), 346-357. 54. Dr. Hong Deng; Xiaolin Li; Qing Peng; Xun Wang; Prof. Jinping Chen; Li., P. Y., Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angewandte Chemie International Edition 2005, 44 (18), 2782-2785. 55. López Pérez, J. A.; López Quintela, M. A.; Mira, J.; Rivas, J.; Charles, S. W., Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. The Journal of Physical Chemistry B 1997, 101 (41), 8045-8047. 56. Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. A., Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 288 (1), 44-51. 57. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715. 58. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G., Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. Journal of the American Chemical Society 2004, 126 (1), 273-279. 59. Aguilar-Arteaga, K.; Rodriguez, J. A.; Barrado, E., Magnetic solids in analytical chemistry: A review. Analytica Chimica Acta 2010, 674 (2), 157-165. 60. Bai, L.; Mei, B.; Guo, Q.-Z.; Shi, Z.-G.; Feng, Y.-Q., Magnetic solid-phase extraction of hydrophobic analytes in environmental samples by a surface hydrophilic carbon-ferromagnetic nanocomposite. Journal of Chromatography A 2010, 1217 (47), 7331-7336. 61. Daniel Horák; Michal Babič; Hana Macková; Beneš, M. J., Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science 2007, 30, 1751-1772. 62. de Dios, A. S.; Díaz-García, M. E., Multifunctional nanoparticles: Analytical prospects. Analytica Chimica Acta 2010, 666 (1), 1-22. 63. Schartl, W., Current directions in core–shell nanoparticle design. Nanoscale 2010, 2, 829-843. 64. Iparraguirre, A.; Navarro, P.; Rodil, R.; Prieto, A.; Olivares, M.; Etxebarria, N.; Zuloaga, O., Matrix effect during the membrane-assisted solvent extraction coupled to liquid chromatography tandem mass spectrometry for the determination of a variety of endocrine disrupting compounds in wastewater. Journal of Chromatography A 2014, 1356, 163-170. 65. Salgueiro-González, N.; Concha-Graña, E.; Turnes-Carou, I.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D., Determination of alkylphenols and bisphenol A in seawater samples by dispersive liquid–liquid microextraction and liquid chromatography tandem mass spectrometry for compliance with environmental quality standards (Directive 2008/105/EC). Journal of Chromatography A 2012, 1223, 1-8. 66. Shao, B.; Han, H.; Hu, J.; Zhao, J.; Wu, G.; Xue, Y.; Ma, Y.; Zhang, S., Determination of alkylphenol and bisphenol A in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry. Analytica Chimica Acta 2005, 530 (2), 245-252. 67. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials 1996, 8 (9), 2209-2211. 68. Yamaura, M.; Camilo, R. L.; Sampaio, L. C.; Macêdo, M. A.; Nakamura, M.; Toma, H. E., Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. Journal of Magnetism and Magnetic Materials 2004, 279 (2), 210-217. 69. Mi, X.; Li, S.; Li, Y.; Wang, K.; Zhu, D.; Chen, G., Quantitative determination of 26 steroids in eggs from various species using liquid chromatography–triple quadrupole-mass spectrometry. Journal of Chromatography A 2014, 1356, 54-63. 70. Socas-Rodríguez, B.; Hernández-Borges, J.; Salazar, P.; Martín, M.; Rodríguez-Delgado, M. Á., Core–shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid-phase extraction for the determination of estrogenic compounds in water samples prior to high-performance liquid chromatography–mass spectrometry analysis. Journal of Chromatography A 2015, 1397, 1-10. 71. Cavaliere, C.; Capriotti, A. L.; Ferraris, F.; Foglia, P.; Samperi, R.; Ventura, S.; Laganà, A., Multiresidue analysis of endocrine-disrupting compounds and perfluorinated sulfates and carboxylic acids in sediments by ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2016, 1438, 133-142. 72. Ma, L.; Ashworth, D.; Yates, S. R., Simultaneous determination of estrogens and progestogens in honey using high performance liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2016, 131, 303-308. 73. He, X.-P.; Lian, Z.-R.; Tan, L.-J.; Wang, J.-T., Preparation and characterization of magnetic molecularly imprinted polymers for selective trace extraction of dienestrol in seawater. Journal of Chromatography A 2016, 1469, 8-16. 74. Chen, W.; Xue, M.; Xue, F.; Mu, X.; Xu, Z.; Meng, Z.; Zhu, G.; Shea, K. J., Molecularly imprinted hollow spheres for the solid phase extraction of estrogens. Talanta 2015, 140, 68-72. 75. Lu, H.; Xu, S., Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC. Talanta 2015, 144, 303-311. 76. Gao, R.; Su, X.; He, X.; Chen, L.; Zhang, Y., Preparation and characterisation of core–shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples. Talanta 2011, 83 (3), 757-764.zh_TW
dc.description.abstractEndocrine disrupting chemicals (EDCs) in aquatic environment have gained global attention because they may interfere with central regulatory functions by antagonizing or mimicking the effects of endogenous hormones even at extremely low concentrations. In human life, the use of estrogens, the group of steroidal hormones of EDCs, in animal feeds, contraceptives, and hormone replacement therapy drugs is increasing dramatically. Estrogens enter the human living environment may cause many diseases such as breast and prostate cancers. Hence, to develop an efficiency analytical method for determination of estrogens in aquatic samples is important. This study developed magnetic molecularly imprinted polymers (mMIPs) for dispersive micro solid-phase extraction (DμSPE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for characterization of trace estrogens in aquatic samples. The experimental conditions including the synthesis of mMIPs and extraction parameters were optimized. In this study, 10 mg mMIPs were placed in a 1.5 mL microtube, subsequently added 1 mL water sample pH adjusted to 8. The mixed solution was vortexed for 3 min and separated using an external magnet followed by washing with pH 8 buffer. Then added 200 μL 5% NH4OH in acetonitrile and vortexed for 1 min. After separated, the supernatant was injected into the LC-MS/MS. The linearity of the proposed method ranged from 0.1 – 50 ng/mL for estradiol (E2), 17α-Ethinylestradiol (EE2), and 0.05 – 50 ng/mL for estrone (E1), diethylstilbestrol (DES) with the coefficients of determination above 0.9968. The limit of detection (LODs) ranged from 0.4 – 1.4 pg/mL. The feasibility of applying the proposed method to determine the trace estrogens in environmental water samples of Taichung area was also examined. The trace amount of DES, E1, E2, and EE2 in environmental water were detected by proposed method at 0.92, 1.16, 0.48, and 1 ng/mL, respectively. The results showed the developed method can be successfully utilized for analyzing the trace of estrogens.en_US
dc.description.abstract環境水樣中所含的內分泌干擾物近年來逐漸受到世界各國的重視,主要原因為其會干擾或著模仿有機體內分泌賀爾蒙,即使在極低的濃度之下 (ng/L) 也會影響到人體健康。在生活中,雌激素常被應用在添加於養殖飼料、賀爾蒙治療藥物與避孕藥中,經由環境而長期接觸雌激素化合物有可能造成癌症病發。因此,開發一有效率檢測環境水樣中雌激素的分析方法是一個值得重視的課題。本研究開發磁性分子印模聚合物 (magnetic molecularly imprinted polymers, mMIPs) 利用分散式固相微萃取法結合液相層析串聯質譜術,於環境水樣中的微量雌激素進行分析。在研究中磁性分子印模聚合物合成及前處理方法均進行最佳化測試。實驗結果顯示前處理最佳化步驟為取 10 mg 的磁性分子印模聚合物加入 1.5 mL 微量離心管中,添加經 pH 值調整為 8 之 1 mL樣品,以渦流震盪萃取 3 分鐘後,利用外加磁場使磁性分子印模聚合物與水溶液快速分離,以 pH 8 緩衝溶液清洗,再加入 200 μL 5% 之 25% 氨水之乙腈溶液進行脫附,分離後取上清液並以液相層析串聯質譜儀系統進行分析。從實驗結果可得雌二醇和 17α-乙炔基雌脂二醇之線性範圍介於 0.1至 50 ng/mL 之間,雌酮和二乙基己烯雌酚之線性範圍介於 0.05 至 50 ng/mL 之間。線性相關係數皆在 0.9968 以上,方法偵測極限介於 0.41 至 1.4 pg/mL 之間。將此方法用於台中市環境水樣中進行偵測,可測得微量雌激素,二乙基己烯雌酚為 0.92 ng/mL、雌酮為 1.16 ng/mL、雌二醇為為 0.48 ng/mL 以及 17α-乙炔基雌脂二醇為為 1 ng/mL。故此方法可作為環境水樣中微量雌激素檢測方法之參考。zh_TW
dc.description.tableofcontents摘要 i 英文摘要 iii 目錄 v 表目錄 xii 圖目錄 xiv 第一章 緒論 1 1.1 雌激素介紹 1 1.2 雌激素之檢驗方法 6 1.3 質譜術原理 8 1.3.1 電噴灑游離法(electrospray ionization, ESI) 11 1.3.2 加熱式電噴灑游離法 (heated electrospray ionization, HESI) 14 1.3.3 串聯質譜術 (tandem mass spectrometry, MS/MS) 16 1.3.4 質量分析器 (mass analyzer) 19 1.3.5 三段四極矩串聯質譜儀 (triple quadrupole mass spectrometer) 19 1.4 分子印模聚合物之概述 25 1.4.1 分子印模聚合物之簡介 25 1.4.2 分子印模聚合物之原理 26 1.4.3 分子印模聚合物之合成 27 1.4.4 分子印模聚合物鍵結之作用力 33 1.4.5 分子印模聚合物之製備 39 1.5 磁性分子印模聚合物技術 43 1.5.1 磁性材料之簡介 43 1.5.2 磁性分子印模聚合物之應用 45 1.6 實驗目的 45 第二章 實驗部分 47 2.1 藥品與試劑 47 2.2 藥品配製 49 2.2.1 雌激素化合物 1000 μg/mL 儲存溶液 (stock solution) 之配製 49 2.2.2 雌激素化合物 100 μg/mL 儲存溶液 (stock solution) 之配製 49 2.2.3 雌激素化合物 10 μg/mL 及 1 μg/mL 之混合標準溶液配製 49 2.2.4 雌酮 (E1) 化合物 1 μg/mL 之水樣工作溶液配製 50 2.2.5 雌激素化合物 10 μg/mL 之混合標準水溶液配製 50 2.2.6 緩衝溶液之配置 50 2.2.7 水樣方法檢量線工作溶液之配製 52 2.3 實驗器材與儀器設備 52 2.3.1 實驗器材 52 2.3.2 液相層析質譜儀 54 2.3.3 液相層析條件 54 2.3.4 動相添加氨水比例之探討 56 2.4 液相層析質譜儀參數之探討 56 2.4.1 掃描時間 (scan time) 之探討 56 2.4.2 霧化氣體 (sheath gas pressure) 之探討 56 2.4.3 輔助氣體 (auxiliary gas pressure) 之探討 57 2.4.4 噴灑電壓 (spray voltage) 之探討 57 2.4.5 加熱氣體溫度 (vaporizer temperature) 之探討 57 2.5 磁性分子印模聚合物之合成方法 58 2.5.1 奈米磁性粒子之製備 58 2.5.2 奈米磁性粒子之表面修飾 58 2.5.3 磁性分子印模聚合物之製備 59 2.6 奈米磁性分子印模聚合物之鑑定分析與樣品製備 60 2.6.1 傅立葉紅外光譜儀 (Fourier transform infrared spectroscopy, FT-IR) 鑑定分析 60 2.6.2 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 鑑定分析 61 2.7 磁性分子印模聚合物合成最佳化條件之探討 61 2.7.1 二氧化矽聚合時間之探討 61 2.7.2 分子印模聚合物合成條件之探討 62 2.8 奈米磁性分子印模聚合物前處理方法之條件探討 62 2.8.1 前處理過程 62 2.8.2 萃取條件之最佳化 63 2.8.3 脫附條件之最佳化 64 2.9 方法確效 (method validation) 之探討 66 2.10 奈米磁性分子印模聚合物製備批次間之比較 67 2.11 真實樣品之檢測 68 第三章 結果與討論 69 3.1 標準質譜圖之建立 69 3.2 選擇反應偵測模式之探討 72 3.3 動相添加氨水比例之探討 77 3.4 磁性分子印模聚合物材料表面特性之探討 77 3.4.1 磁性分子印模聚合物之 FT-IR 光譜 77 3.4.2 磁性分子印模聚合物之 TEM 圖 81 3.5 液相層析串聯質譜儀參數之探討 81 3.5.1 掃描時間 (scan time) 之探討 81 3.5.2 霧化氣體 (sheath gas pressure) 之探討 83 3.5.3 輔助氣體 (auxiliary gas pressure) 之探討 86 3.5.4 噴灑電壓 (spray voltage) 之探討 86 3.5.5 加熱氣體溫度 (vaporizer temperature) 之探討 89 3.6 磁性分子印模聚合物合成條件之探討 92 3.6.1 二氧化矽聚合時間之探討 92 3.6.2 分子印模聚合物合成條件之探討 92 3.7 磁性分子印模聚合物前處理條件之探討 95 3.7.1 樣品 pH 值對萃取效率影響之探討 95 3.7.2 萃取時間對萃取效率影響之探討 97 3.7.3 脫附溶劑之選擇 97 3.7.4 脫附溶劑中添加不同溶液影響之探討 99 3.7.5 脫附溶液體積之探討 102 3.7.6 脫附時間之探討 102 3.8 方法確效 106 3.8.1 線性濃度範圍、線性方程式、線性相關係數、定量極限與偵測極限 106 3.8.2 精密度 108 3.8.3 回收率 111 3.8.4 奈米磁性分子印模聚合物製備批次間之比較 111 3.9 真實樣品之分析 113 3.10 分散式固相微萃取法與其他萃取方法比較 118 第四章 結論 120 第五章 參考文獻 121zh_TW
dc.subjectmagnetic nanoparticlesen_US
dc.subjectmolecularly imprinted polymersen_US
dc.subjectenvironmental aqueous samplesen_US
dc.titleMagnetic Molecularly Imprinted Polymers for Dispersive micro Solid - Phase Extraction of Estrogens in Environmental Aqueous Samples by Liquid Chromatography-Tandem Mass Spectrometryen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:化學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104051051-1.pdf3.22 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.