Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96301
標題: Synthesis of π-Conjugated Porphyrins for Perovskite Solar Cells and Organic Photovoltaics
應用於鈣鈦礦太陽能電池及有機光伏電池之π共軛紫質合成
作者: Yun-Ru Li
黎芸汝
關鍵字: 紫質;鈣鈦礦太陽能電池;電洞傳輸層;有機光伏電池;Porphyrins;Perovskite Solar Cells;HTM;Organic Photovoltaics
引用: 1. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 2015, 23 (1), 1-9. 2. El Chaar, L.; El Zein, N., Review of photovoltaic technologies. Renewable and sustainable energy reviews 2011, 15 (5), 2165-2175. 3. Boyle, G., Renewable energy. OXFORD university press Oxford: 2004; Vol. 328. 4. Green, M. A., The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications 2009, 17 (3), 183-189. 5. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676-677. 6. Green, M. A.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. H., Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications 2017, 25 (7), 668-676. 7. Spear, W.; Le Comber, P.; Snell, A.; Gibson, R., Recent applied developments in the amorphous silicon field. Thin Solid Films 1982, 90 (4), 359-370. 8. Mahan, A. H.; Carapella, J.; Nelson, B. P.; Crandall, R. S.; Balberg, I., Deposition of device quality, lowHcontent amorphous silicon. Journal of Applied Physics 1991, 69 (9), 6728-6730. 9. Kuzmich, A.; Padula, D.; Ma, H.; Troisi, A., Trends in the electronic and geometric structure of non-fullerene based acceptors for organic solar cells. Energy Environ. Sci. 2017, 10 (2), 395-401. 10. Wang, J. L.; Liu, K. K.; Liu, S.; Liu, F.; Wu, H. B.; Cao, Y.; Russell, T. P., Applying Thienyl Side Chains and Different pi-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. ACS Appl Mater Interfaces 2017, 9 (23), 19998-20009. 11. Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y., Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2006, 90 (5), 549-573. 12. O'regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 1991, 353 (6346), 737-740. 13. Lan, J.-L.; Wei, T.-C.; Feng, S.-P.; Wan, C.-C.; Cao, G., Effects of Iodine Content in the Electrolyte on the Charge Transfer and Power Conversion Efficiency of Dye-Sensitized Solar Cells under Low Light Intensities. The Journal of Physical Chemistry C 2012, 116 (49), 25727-25733. 14. Gong, J. W.; Sumathy, K.; Qiao, Q. Q.; Zhou, Z. P., Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew Sust Energ Rev 2017, 68, 234-246. 15. Shakeel Ahmad, M.; Pandey, A. K.; Abd Rahim, N., Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews 2017, 77, 89-108. 16. Zhang, L.; Cole, J. M., Dye aggregation in dye-sensitized solar cells. J. Mater. Chem. A 2017, 5 (37), 19541-19559. 17. Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. 18. Lee, C. W.; Lu, H. P.; Lan, C. M.; Huang, Y. L.; Liang, Y. R.; Yen, W. N.; Liu, Y. C.; Lin, Y. S.; Diau, E. W. G.; Yeh, C. Y., Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chemistry-A European Journal 2009, 15 (6), 1403-1412. 19. Mai, C. L.; Huang, W. K.; Lu, H. P.; Lee, C. W.; Chiu, C. L.; Liang, Y. R.; Diau, E. W.; Yeh, C. Y., Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem Commun (Camb) 2010, 46 (5), 809-11. 20. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634. 21. Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.; Yeh, C. Y.; Gratzel, M., Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew Chem Int Ed Engl 2014, 53 (11), 2973-2977. 22. Chou, H. H.; Reddy, K. S.; Wu, H. P.; Guo, B. C.; Lee, H. W.; Diau, E. W.; Hsu, C. P.; Yeh, C. Y., Influence of Phenylethynylene of Push-Pull Zinc Porphyrins on the Photovoltaic Performance. ACS Appl Mater Interfaces 2016, 8 (5), 3418-27. 23. Zheng, L.; Zhang, D.; Ma, Y.; Lu, Z.; Chen, Z.; Wang, S.; Xiao, L.; Gong, Q., Morphology control of the perovskite films for efficient solar cells. Dalton Trans 2015, 44 (23), 10582-93. 24. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514. 25. Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J., Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy 2016, 6 (2), 022001. 26. Jung, J. W.; Chueh, C.-C.; Jen, A. K. Y., High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material. Advanced Energy Materials 2015, 5 (17), 1500486 - 1500486. 27. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 2013, 13 (4), 1764-9. 28. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. 29. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591-598. 30. Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 2012, 134 (42), 17396-9. 31. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface engineering of highly efficient perovskite solar cells. Science 2014, 345 (6196), 542-546. 32. Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A., Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%. Nano Energy 2016, 23, 138-144. 33. Chou, H.-H.; Chiang, Y.-H.; Li, M.-H.; Shen, P.-S.; Wei, H.-J.; Mai, C.-L.; Chen, P.; Yeh, C.-Y., Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6%. ACS Energy Letters 2016, 1 (5), 956-962. 34. Chen, S.; Liu, P.; Hua, Y.; Li, Y.; Kloo, L.; Wang, X.; Ong, B.; Wong, W. K.; Zhu, X., Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells. ACS Appl Mater Interfaces 2017, 9 (15), 13231-13239. 35. Mane, S. B.; Sutanto, A. A.; Cheng, C. F.; Xie, M. Y.; Chen, C. I.; Leonardus, M.; Yeh, S. C.; Beyene, B. B.; Diau, E. W.; Chen, C. T.; Hung, C. H., Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Appl Mater Interfaces 2017, 9 (37), 31950-31958. 36. Agarwala, P.; Kabra, D., A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 2017, 5 (4), 1348-1373. 37. Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D.; Snaith, H. J., The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. The journal of physical chemistry letters 2014, 5 (7), 1096-1102. 38. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials 2014, 24 (1), 151-157. 39. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237. 40. Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J., Abnormal crystal growth in CH 3 NH 3 PbI 3− x Cl x using a multi-cycle solution coating process. Energy & Environmental Science 2015, 8 (8), 2464-2470. 41. Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C., Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials 2015, 27 (27), 4013-4019. 42. Kearns, D.; Calvin, M., Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics 1958, 29 (4), 950-951. 43. Onsager, L., Initial recombination of ions. Physical Review 1938, 54 (8), 554-557. 44. Tang, C. W., Two‐layer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183-185. 45. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 1474-1476. 46. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270 (5243), 1789. 47. Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics 2009, 3 (5), 297-302. 48. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 2014, 5, 5293. 49. Liu, Y.; Chen, C. C.; Hong, Z.; Gao, J.; Yang, Y. M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y., Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep 2013, 3, 3356. 50. Zhang, Q.; Kan, B.; Liu, F.; Long, G.; Wan, X.; Chen, X.; Zuo, Y.; Ni, W.; Zhang, H.; Li, M.; Hu, Z.; Huang, F.; Cao, Y.; Liang, Z.; Zhang, M.; Russell, T. P.; Chen, Y., Small-molecule solar cells with efficiency over 9%. Nature Photonics 2014, 9 (1), 35-41. 51. Li, L.; Huang, Y.; Peng, J.; Cao, Y.; Peng, X., Enhanced performance of solution-processed solar cells based on porphyrin small molecules with a diketopyrrolopyrrole acceptor unit and a pyridine additive. J. Mater. Chem. A 2013, 1 (6), 2144-2150. 52. Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Janssen, R. A.; Peng, X., Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses. J Am Chem Soc 2015, 137 (23), 7282-7285. 53. Hsu, F.-C.; Hsieh, M.-K.; Kashi, C.; Yeh, C.-Y.; Lin, T.-Y.; Chen, Y.-F., Porphyrin dimers as donors for solution-processed bulk heterojunction organic solar cells. RSC Adv. 2016, 6 (65), 60626-60632. 54. Lai, T.; Chen, X.; Xiao, L.; Zhang, L.; Liang, T.; Peng, X.; Cao, Y., Conjugated D-A porphyrin dimers for solution-processed bulk-heterojunction organic solar cells. Chem Commun (Camb) 2017, 53 (37), 5113-5116. 55. Liu, Z.; Tian, M.; Wang, N., Influences of Alq 3 as electron extraction layer instead of Ca on the photo-stability of organic solar cells. Journal of Power Sources 2014, 250, 105-109. 56. Hau, S. K.; Yip, H.-L.; Baek, N. S.; Zou, J.; O'Malley, K.; Jen, A. K.-Y., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters 2008, 92 (25), 225. 57. Lee, T.-W.; Noh, T.; Choi, B.-K.; Kim, M.-S.; Shin, D. W.; Kido, J., High-efficiency stacked white organic light-emitting diodes. Applied Physics Letters 2008, 92 (4), 26. 58. Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., A review of polymer multijunction solar cells. Energy & Environmental Science 2010, 3 (7), 867-883. 59. Sekine, C.; Tsubata, Y.; Yamada, T.; Kitano, M.; Doi, S., Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater 2014, 15 (3), 034203. 60. Li, G.; Zhu, R.; Yang, Y., Polymer solar cells. Nature Photonics 2012, 6 (3), 153-161. 61. Blaesser, G.; Rossi, E., Extrapolation of outdoor measurements of PV array I–V characteristics to standard test conditions. Solar Cells 1988, 25 (2), 91-96. 62. Kippelen, B.; Brédas, J.-L., Organic photovoltaics. Energy & Environmental Science 2009, 2 (3), 251. 63. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of conjugated polymers for organic solar cell applications. Chemical reviews 2009, 109 (11), 5868-5923. 64. Pasternack, R. F.; Gibbs, E. J., Porphyrin and Metalloporphyrin. Metal Ions in Biological Systems: Volume 33: Probing of Nucleic Acids by Metal Ion Complexes of Small Molecules 1996, 33, 367. 65. Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B., High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450. Journal of the American Chemical Society 1981, 103 (10), 2884-2886. 66. Chang, C. K., Paul Rothemund and S. Ferguson MacDonald, and their Namesake Reactions - The Influence of the Fischer School on my Life in Porphyrin Chemistry. Israel Journal of Chemistry 2016, 56 (2-3), 130-143. 67. Anderson, H. L., Building molecular wires from the colours of life: conjugated porphyrin oligomers. Chemical Communications 1999, (23), 2323-2330. 68. Henriques, C. A.; Pinto, S. M. A.; Pineiro, M.; Canotilho, J.; Eusébio, M. E. S.; Pereira, M. M.; Calvete, M. J. F., Solventless metallation of low melting porphyrins synthesized by the water/microwave method. RSC Advances 2015, 5 (80), 64902-64910. 69. Ka, J.-W.; Lee, C.-H., Optimizing the synthesis of 5, 10-disubstituted tripyrromethanes. Tetrahedron Letters 2000, 41 (23), 4609-4613. 70. Wiehe, A.; Shaker, Y. M.; Brandt, J. C.; Mebs, S.; Senge, M. O., Lead structures for applications in photodynamic therapy. Part 1: Synthesis and variation of m-THPC (Temoporfin) related amphiphilic A2BC-type porphyrins. Tetrahedron 2005, 61 (23), 5535-5564. 71. Chen, J.; Ko, S.; Liu, L.; Sheng, Y.; Han, H.; Li, X., The effect of porphyrins suspended with different electronegative moieties on the photovoltaic performance of monolithic porphyrin-sensitized solar cells with carbon counter electrodes. New Journal of Chemistry 2015, 39 (4), 2889-2900. 72. Ziessel, R.; Heyer, E., Panchromatic Push–Pull Dyes of Elongated Form from Triphenylamine, Diketopyrrolopyrrole, and Tetracyanobutadiene Modules. Synlett 2015, 26 (15), 2109-2116. 73. Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Rohr, J. A.; Tan, C. H.; Collado-Fregoso, E.; Knall, A. C.; Durrant, J. R.; Nelson, J.; McCulloch, I., A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J Am Chem Soc 2015, 137 (2), 898-904. 74. Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J.-E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M.; Bäuerle, P., Significant Improvement of Dye-Sensitized Solar Cell Performance by Small Structural Modification in π-Conjugated Donor-Acceptor Dyes. Advanced Functional Materials 2012, 22 (6), 1291-1302. 75. Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H.; Wong, K. T., A low-energy-gap organic dye for high-performance small-molecule organic solar cells. J Am Chem Soc 2011, 133 (40), 15822-15825. 76. Goldberg, P. K.; Pundsack, T. J.; Splan, K. E., Photophysical investigation of neutral and diprotonated free-base bis(arylethynyl)porphyrins. J Phys Chem A 2011, 115 (38), 10452-10460. 77. Reeve, J. E.; Collins, H. A.; Mey, K. D.; Kohl, M. M.; Thorley, K. J.; Paulsen, O.; Clays, K.; Anderson, H. L., Amphiphilic porphyrins for second harmonic generation imaging. Journal of the American Chemical Society 2009, 131 (8), 2758-2759. 78. Balaz, M.; Collins, H. A.; Dahlstedt, E.; Anderson, H. L., Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Org Biomol Chem 2009, 7 (5), 874-888. 79. Yin, N.; Wang, L.; Lin, Y.; Yi, J.; Yan, L.; Dou, J.; Yang, H. B.; Zhao, X.; Ma, C. Q., Effect of the pi-conjugation length on the properties and photovoltaic performance of A-pi-D-pi-A type oligothiophenes with a 4,8-bis(thienyl)benzo[1,2-b:4,5-b']dithiophene core. Beilstein J Org Chem 2016, 12, 1788-1797. 80. Gao, K.; Miao, J.; Xiao, L.; Deng, W.; Kan, Y.; Liang, T.; Wang, C.; Huang, F.; Peng, J.; Cao, Y.; Liu, F.; Russell, T. P.; Wu, H.; Peng, X., Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-Based Organic Photovoltaics. Adv Mater 2016, 28 (23), 4727-4733.
摘要: 
The rapid development of the society has led to growing environmental issues which, whether global, regional or local, continue to challenge all countries in the world. For the sake of sustainable development of the environment, we have to change. It is said that the light energy of Sun while exposed to Earth is sufficient enough to provide energy consumption of mankind for the entire year. Consequently, the lack of energy can possibly be resolved if solar energy can be suitably utilized. In the concern, solar power generation system has become one of the most viable approaches. Recently, perovskite solar cells (PSCs) have been developed rapidly due to their extremely high power conversion efficiency (PCEs). In addition, organic photovoltaics cells (OPVs) have attracted much attention due to their low material and manufacturing cost.

In this thesis, a series of novel porphyrin-based hole-transporting materials (HTMs) have been developed based on D-π-D architecture of Y2 developed in our group. The of electron donating ethynylaniline groups were retained while branched alkoxylphenol substituents were introduced for the new monomeric porphyrin YR1. Replacement of zinc metal center with copper leads to porphyrin YR2. Replacement of monomeric porphyrin entity with dimeric ones becomes porphyrin YR3. The later has been tested to have power conversion efficiency (PCE) as high as 17.84% which performs as high as 96% of that for Spiro-OMeTAD.

On the other hand, a series of A-π-A monomeric porphyrins (YR4-YR6 and YR9-YR11) where A represents electron acceptor such as diketopyrrolopyrrole (DPP) or rhodanine groups and π represents monomeric or dimeric porphyrin cores. Functionalization of two lateral DPP groups on monomeric or dimeric porphyrin cores leads to YR4 and YR5, respectively. Application of YR4 and YR5 as HTM for perovskite solar cells have been found to perform very well. Insertion of additional electron-accepting anthracene or benzothiadiazole groups to bridge between two porphyrin cores leads to YR12 and YR13, repectively. The latter two have been employed as electron donor whereas PCBM as electron acceptor for bulk-heterojunction (BHJ) photovoltaics.

The increased π-conjugation length and the broadened UV-vis absorption for the YR12/YR13 are believed to influence the corresponding power conversion efficiency.

由於過去快速發展所導致的環境變遷,不論是全球性、地區性還是地方性的環境議題,都持續挑戰全世界各國,為了環境的永續經營,我們不得不改變。太陽每小時照射到地球上的光能量可供人類一年所需,若能充分利用,能源缺乏問題將可獲得解決,因此太陽能發電系統成為替代與綠色再生能源的首選。近年來,具有極高光電轉換效率(PCE)特性的鈣鈦礦太陽能電池(PSC)的發展相當快速,另外,有機光伏電池(OPV)擁有低材料和製造成本、可roll-to-roll大量生產、穩定性高等優勢,也備受矚目。
本篇論文以本實驗室近年所開發之新穎D-π-D結構的單紫質電洞傳輸材料(HTM) (Y2)為結構主體,保留高效率的推電子苯胺基及紫質中心,並修飾含支鏈烷基之苯酚基團合成出單體鋅紫質HTM (YR1)及中心金屬置換之單體銅紫質HTM (YR2),以及含雙鋅紫質(porphyrin dimer)結構之衍生物(YR3)。其中,使用雙紫質材料YR3之光電轉換效率(PCE)高達17.84%,為使用Spiro-OMeTAD之96%。
此外,我們也以鋅紫質做為主體,引入不同的拉電子基來合成出一系列A-π-A型的單紫質材料 (YR4-YR6及YR9-YR11),其中A為拉電子基團如diketopyrrolopyrrole (DPP)或rhodanine,而π為單鋅紫質或雙鋅紫質基團。以DPP為拉電子基團之材料為紫質單體(YR4)及雙體(YR5)。將 YR4和YR5同時應用於高效率的有機光伏電池及鈣鈦礦太陽能電池上亦有不錯的表現。另一方面,於紫質雙體間引入anthracene或benzothiadiazole做為架橋基(bridge)之材料分別為 YR12和YR13。我們使用本系列紫質材料做為電子供體(electron donor),搭配PCBM作為電子受體(electron acceptor)進行混摻(blending),可製成有機異質結構(bulk-heterojunction,BHJ)之有機光伏電池。在YR12/YR13中,架橋基的引入可增加π共軛長度、增加其對紫外光-可見光光譜的吸收範圍,並預期可進一步探討其光電轉換效率之結果。
URI: http://hdl.handle.net/11455/96301
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-05起公開。
Appears in Collections:化學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-7104051045-1.pdf9.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.