Please use this identifier to cite or link to this item:
標題: Oxygen and boronic acid functionalized screen printed carbon electrode for electrochemical sensors
作者: Thiruppathi Murugan
關鍵字: 網版印刷碳電極;多環芳香烴;硼酸;二聚體;聚合物;次氯酸鹽;糖;氟化物;磷酸鹽;Screen printed carbon electrode;PAHs;boronic acid;dimer;polymer;hypochlorite;sugar;fluoride;phosphate
引用: References 1. Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M., The Role of Oxygen Functionalities and Edge Plane Sites on Screen-Printed Carbon Electrodes for Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid. Electrochem. Commun. 2008, 10, 559-563. 2. Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M., Disposable Electrochemical Sensors: A Mini Review. Electrochem. Commun. 2014, 38, 86-90. 3. Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Zen, J.-M., Role of Defect Sites and Oxygen Functionalities on Preanodized Screen Printed Carbon Electrode for Adsorption and Oxidation of Polyaromatic Hydrocarbons. Electrochem. Commun. 2016, 69, 15-18. 4. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications; John Wiely & Sons: Canada, 1980. 5. Harris, D. C., Quantitative Chemical Analysis, 8 ed.; W. H. Freeman and Company, 2010. 6. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, 8 ed.; David Harris: Canada, 2004. 7. Lane, R. F.; Hubbard, A. T., Electrochemistry of Chemisorbed Molecules. I. Reactants Connected to Electrodes through Olefinic Substituents. The Journal of Physical Chemistry 1973, 77, 1401-1410. 8. Murray, R. W., Chemically Modified Electrodes. Acc. Chem. Res. 1980, 13, 135-141. 9. Zen, J.-M.; Senthil Kumar, A.; Tsai, D.-M., Recent Updates of Chemically Modified Electrodes in Analytical Chemistry. Electroanalysis 2003, 15, 1073-1087. 10. Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M., Adsorption of Phenolic Compounds by Activated Carbon—a Critical Review. Chemosphere 2005, 58, 1049-1070. 11. Guo, Y.; Kaplan, S.; Karanfil, T., The Significance of Physical Factors on the Adsorption of Polyaromatic Compounds by Activated Carbons. Carbon 2008, 46, 1885-1891. 12. Jia, Y.; Demopoulos, G. P., Adsorption of Silver onto Activated Carbon from Acidic Media:  Nitrate and Sulfate Media. Industrial & Engineering Chemistry Research 2003, 42, 72-79. 13. Chen, P.; Fryling, M. A.; McCreery, R. L., Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites. Anal. Chem. 1995, 67, 3115-3122. 14. Chen, P.; McCreery, R. L., Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Anal. Chem. 1996, 68, 3958-3965. 15. McDermott, M. T.; McCreery, R. L., Scanning Tunneling Microscopy of Ordered Graphite and Glassy Carbon Surfaces: Electronic Control of Quinone Adsorption. Langmuir 1994, 10, 4307-4314. 16. Han, X.; Lin, H.; Zheng, Y., The Role of Oxygen Functional Groups in the Adsorption of Heteroaromatic Nitrogen Compounds. J. Hazard. Mater. 2015, 297, 217-223. 17. Zhang, G.; Kirkman, P. M.; Patel, A. N.; Cuharuc, A. S.; McKelvey, K.; Unwin, P. R., Molecular Functionalization of Graphite Surfaces: Basal Plane Versus Step Edge Electrochemical Activity. J. Am. Chem. Soc. 2014, 136, 11444-11451. 18. Haghseresht, F.; Finnerty, J. J.; Nouri, S.; Lu, G. Q., Adsorption of Aromatic Compounds onto Activated Carbons:  Effects of the Orientation of the Adsorbates. Langmuir 2002, 18, 6193-6200. 19. McDermott, M. T.; Kneten, K.; McCreery, R. L., Anthraquinonedisulfonate Adsorption, Electron-Transfer Kinetics, and Capacitance on Ordered Graphite Electrodes: The Important Role of Surface Defects. The Journal of Physical Chemistry 1992, 96, 3124-3130. 20. Cho, H.-H.; Smith, B. A.; Wnuk, J. D.; Fairbrother, D. H.; Ball, W. P., Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Environ. Sci. Technol 2008, 42, 2899-2905. 21. McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev 2008, 108, 2646-2687. 22. Engstrom, R. C., Electrochemical Pretreatment of Glassy Carbon Electrodes. Anal. Chem. 1982, 54, 2310-2314. 23. Alsmeyer, D. C.; McCreery, R. L., In Situ Raman Monitoring of Electrochemical Graphite Intercalation and Lattice Damage in Mild Aqueous Acids. Anal. Chem. 1992, 64, 1528-1533. 24. Moreno-Castilla, C.; Ferro-Garcia, M.; Joly, J.; Bautista-Toledo, I.; Carrasco-Marin, F.; Rivera-Utrilla, J., Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir 1995, 11, 4386-4392. 25. Chiu, M.-H.; Wei, W.-C.; Zen, J.-M., The Role of Oxygen Functionalities at Carbon Electrode to the Electrogenerated Chemiluminescence of Ru (Bpy) 3 2+. Electrochem. Commun. 2011, 13, 605-607. 26. Yan, J.; Springsteen, G.; Deeter, S.; Wang, B., The Relationship among Pka, Ph, and Binding Constants in the Interactions between Boronic Acids and Diols—It Is Not as Simple as It Appears. Tetrahedron 2004, 60, 11205-11209. 27. Springsteen, G.; Wang, B., A Detailed Examination of Boronic Acid–Diol Complexation. Tetrahedron 2002, 58, 5291-5300. 28. Tan, L.; Wang, B.; Feng, H., Comparative Studies of Graphene Oxide and Reduced Graphene Oxide as Carbocatalysts for Polymerization of 3-Aminophenylboronic Acid. RSC. Adv. 2013, 3, 2561-2565. 29. Wang, Z.; Shang, K.; Dong, J.; Cheng, Z.; Ai, S., Electrochemical Immunoassay for Subgroup J of Avian Leukosis Viruses Using a Glassy Carbon Electrode Modified with a Film of Poly (3-Thiophene Boronic Acid), Gold Nanoparticles, Graphene and Immobilized Antibody. Microchim. Acta 2012, 179, 227-234. 30. Shoji, E.; Freund, M. S., Potentiometric Saccharide Detection Based on the Pka Changes of Poly(Aniline Boronic Acid). J. Am. Chem. Soc. 2002, 124, 12486-12493. 31. Wu, S.; Han, T.; Guo, J.; Cheng, Y., Poly(3-Aminophenylboronic Acid)-Reduced Graphene Oxide Nanocomposite Modified Electrode for Ultrasensitive Electrochemical Detection of Fluoride with a Wide Response Range. Sens. Actuators. B Chem 2015, 220, 1305-1310. 32. Çiftçi, H.; Oztekin, Y.; Tamer, U.; Ramanavicine, A.; Ramanavicius, A., Development of Poly(3-Aminophenylboronic Acid) Modified Graphite Rod Electrode Suitable for Fluoride Determination. Talanta 2014, 126, 202-207. 33. Nicolas, M.; Fabre, B.; Marchand, G.; Simonet, J., New Boronic-Acid- and Boronate-Substituted Aromatic Compounds as Precursors of Fluoride-Responsive Conjugated Polymer Films. Eur. J. Org. Chem. 2000, 2000, 1703-1710. 34. Morita, K.; Hirayama, N.; Imura, H.; Yamaguchi, A.; Teramae, N., Grafting of Phenylboronic Acid on a Glassy Carbon Electrode and Its Application as a Reagentless Glucose Sensor. J. Electroanal. Chem. 2011, 656, 192-197. 35. Lapinsonnière, L.; Picot, M.; Poriel, C.; Barrière, F., Phenylboronic Acid Modified Anodes Promote Faster Biofilm Adhesion and Increase Microbial Fuel Cell Performances. Electroanalysis 2013, 25, 601-605. 36. Lawrence, K.; Nishimura, T.; Haffenden, P.; Mitchels, J. M.; Sakurai, K.; Fossey, J. S.; Bull, S. D.; James, T. D.; Marken, F., Pyrene-Anchored Boronic Acid Receptors on Carbon Nanoparticle Supports: Fluxionality and Pore Effects. New J. Chem. 2013, 37, 1883-1888. 37. Takahashi, S.; Anzai, J.-i., Phenylboronic Acid Monolayer-Modified Electrodes Sensitive to Sugars. Langmuir 2005, 21, 5102-5107. 38. Li, M.; Zhu, W.; Marken, F.; James, T. D., Electrochemical Sensing Using Boronic Acids. Chem. Commun. 2015, 51, 14562-14573. 39. Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T., Lung Cancer Risk after Exposure to Polycyclic Aromatic Hydrocarbons: A Review and Meta-Analysis. Environ. Health Perspect. 2004, 112, 970-978. 40. Barathi, P.; Kumar, A. S., Facile Electrochemical Oxidation of Polyaromatic Hydrocarbons to Surface-Confined Redox-Active Quinone Species on a Multiwalled Carbon Nanotube Surface. Chemistry – A European Journal 2013, 19, 2236-2241. 41. Chu, S. N.; Sands, S.; Tomasik, M. R.; Lee, P. S.; McNeill, V. F., Ozone Oxidation of Surface-Adsorbed Polycyclic Aromatic Hydrocarbons: Role of Pah−Surface Interaction. J. Am. Chem. Soc. 2010, 132, 15968-15975. 42. Clough, R. L., .Gamma.-Radiation-Oxidation of Polycyclic Aromatic Hydrocarbons: Involvement of Singlet Oxygen. J. Am. Chem. Soc. 1980, 102, 5242-5245. 43. Hammel, K. E., Mechanisms for Polycyclic Aromatic Hydrocarbon Degradation by Ligninolytic Fungi. Environ. Health Perspect. 1995, 103, 41-43. 44. Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M., Degradation of Polycyclic Aromatic Hydrocarbons (Pahs) in Contaminated Soils by Fenton's Reagent: A Multivariate Evaluation of the Importance of Soil Characteristics and Pah Properties. J. Hazard. Mater. 2007, 149, 86-96. 45. Paddon, C. A.; Banks, C. E.; Davies, I. G.; Compton, R. G., Oxidation of Anthracene on Platinum Macro- and Micro-Electrodes: Sonoelectrochemical, Cryoelectrochemical and Sonocryoelectrochemical Studies. Ultrason. Sonochem. 2006, 13, 126-132. 46. Rubio-Clemente, A.; Torres-Palma, R. A.; Peñuela, G. A., Removal of Polycyclic Aromatic Hydrocarbons in Aqueous Environment by Chemical Treatments: A Review. Sci. Total Environ. 2014, 478, 201-225. 47. Subramanian, P.; Murthy, M. S., Mechanism of Vapor-Phase Oxidation of Anthracene over Vanadium Pentoxide Catalyst. Industrial & Engineering Chemistry Process Design and Development 1974, 13, 112-115. 48. Theodoridou, E., Catalytic Reactivity of Carbon-Fibre Supported Cerium Ions in Electro-Oxidations. Synth. Met. 1986, 16, 87-92. 49. Xiong, L.; Batchelor-McAuley, C.; Gonçalves, L. M.; Rodrigues, J. A.; Compton, R. G., The Indirect Electrochemical Detection and Quantification of DNA through Its Co-Adsorption with Anthraquinone Monosulphonate on Graphitic and Multi-Walled Carbon Nanotube Screen Printed Electrodes. Biosens. Bioelectron. 2011, 26, 4198-4203. 50. Convey, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications.; Kluwer Academic Plenum Publishers: New York, 1999, p p.698. 51. Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H., Effect of Pre-Treatment on the Surface and Electrochemical Properties of Screen-Printed Carbon Paste Electrodes. Analyst 2001, 126, 1399-1403. 52. Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J., Electrochemical Activation of Screen-Printed Carbon Strips. Analyst 1996, 121, 345-350. 53. Neumann, C. C. M.; Batchelor-McAuley, C.; Downing, C.; Compton, R. G., Anthraquinone Monosulfonate Adsorbed on Graphite Shows Two Very Different Rates of Electron Transfer: Surface Heterogeneity Due to Basal and Edge Plane Sites. Chemistry – A European Journal 2011, 17, 7320-7326. 54. Chang, J.-L.; Chang, K.-H.; Hu, C.-C.; Cheng, W.-L.; Zen, J.-M., Improved Voltammetric Peak Separation and Sensitivity of Uric Acid and Ascorbic Acid at Nanoplatelets of Graphitic Oxide. Electrochem. Commun. 2010, 12, 596-599. 55. Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A., General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. 56. Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R., Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. PCCP 2007, 9, 1276-1290. 57. Li, H.; Zhu, S.; Cheng, T.; Wang, S.; Zhu, B.; Liu, X.; Zhang, H., Binary Boronic Acid-Functionalized Attapulgite with High Adsorption Capacity for Selective Capture of Nucleosides at Acidic Ph Values. Microchim. Acta 2016, 183, 1779-1786. 58. Zhong, M.; Teng, Y.; Pang, S.; Yan, L.; Kan, X., Pyrrole–Phenylboronic Acid: A Novel Monomer for Dopamine Recognition and Detection Based on Imprinted Electrochemical Sensor. Biosens. Bioelectron. 2015, 64, 212-218. 59. Badhulika, S.; Tlili, C.; Mulchandani, A., Poly(3-Aminophenylboronic Acid)-Functionalized Carbon Nanotubes-Based Chemiresistive Sensors for Detection of Sugars. Analyst 2014, 139, 3077-3082. 60. Hong, S.; Lee, L. Y. S.; So, M.-H.; Wong, K.-Y., A Dopamine Electrochemical Sensor Based on Molecularly Imprinted Poly(Acrylamidophenylboronic Acid) Film. Electroanalysis 2013, 25, 1085-1094. 61. Senthilkumar, K.; Zen, J.-M., Free Chlorine Detection Based on Ec' Mechanism at an Electroactive Polymelamine-Modified Electrode. Electrochem. Commun. 2014, 46, 87-90. 62. Wang, Q.; Kaminska, I.; Niedziolka-Jonsson, J.; Opallo, M.; Li, M.; Boukherroub, R.; Szunerits, S., Sensitive Sugar Detection Using 4-Aminophenylboronic Acid Modified Graphene. Biosens. Bioelectron. 2013, 50, 331-337. 63. Qiang, Z.; Adams, C. D., Determination of Monochloramine Formation Rate Constants with Stopped-Flow Spectrophotometry. Environ. Sci. Technol 2004, 38, 1435-1444. 64. Liu, G.; Luais, E.; Gooding, J. J., The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry. Langmuir 2011, 27, 4176-4183. 65. Wong, C.-S.; Chen, Y.-D.; Chang, J.-L.; Zen, J.-M., Biomolecule-Free, Selective Detection of Clenbuterol Based on Disposable Screen-Printed Carbon Electrode. Electrochem. Commun. 2015, 60, 163-167. 66. Xu, L. Q.; Liu, Y. L.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Reduction of Graphene Oxide by Aniline with Its Concomitant Oxidative Polymerization. Macromol. Rapid Commun. 2011, 32, 684-688. 67. Laviron, E., General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. electroanal. chem. interfacial electrochem. 1979, 101, 19-28. 68. White, G. C., Handbook of Chlorination, 2 ed.; Van Nostrand Reinhold Company Inc: New York, 1986. 69. Wilcox, M. H.; Fawley, W. N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J., Comparison of the Effect of Detergent Versus Hypochlorite Cleaning on Environmental Contamination and Incidence of Clostridium Difficile Infection. J. Hosp. Infect. 2003, 54, 109-114. 70. Organization, W. H., Guidelines for Safe Recreational Water Environments. Volume 2: Swimming Pools and Similar Environments; World Health Organization, 2006. 71. Compton, R. G.; Banks, C. E., Understanding Voltammetry; Imperial college press: London, 2010. 72. Salazar, P.; Martín, M.; García-García, F. J.; González-Mora, J. L.; González-Elipe, A. R., A Novel and Improved Surfactant-Modified Prussian Blue Electrode for Amperometric Detection of Free Chlorine in Water. Sens. Actuators. B Chem 2015, 213, 116-123. 73. Pathiratne, K.; Skandaraja, S.; Jayasena, E., Linear Sweep Voltammetric Determination of Free Chlorine in Waters Using Graphite Working Electrodes. J. Natl. Sci. Found. Sri 2009, 36, 25-31. 74. Tsai, T.-H.; Lin, K.-C.; Chen, S.-M., Electrochemical Synthesis of Poly (3, 4-Ethylenedioxythiophene) and Gold Nanocomposite and Its Application for Hypochlorite Sensor. Int. J. Electrochem. Sci 2011, 6, 2672-2687. 75. Hallaj, T.; Amjadi, M.; Manzoori, J. L.; Shokri, R., Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, and Its Application to the Determination of Free Chlorine. Microchim. Acta 2015, 182, 789-796. 76. Lin, Y.; Yao, B.; Huang, T.; Zhang, S.; Cao, X.; Weng, W., Selective Determination of Free Dissolved Chlorine Using Nitrogen-Doped Carbon Dots as a Fluorescent Probe. Microchim. Acta 2016, 183, 2221-2227. 77. Yu, H.; Zheng, L., Manganese Dioxide Nanosheets as an Optical Probe for Photometric Determination of Free Chlorine. Microchim. Acta 2016, 183, 2229-2234. 78. Moberg, L.; Karlberg, B., An Improved N,N′-Diethyl-P-Phenylenediamine (Dpd) Method for the Determination of Free Chlorine Based on Multiple Wavelength Detection. Anal. Chim. Acta 2000, 407, 127-133. 79. Cametti, M.; Rissanen, K., Highlights on Contemporary Recognition and Sensing of Fluoride Anion in Solution and in the Solid State. Chem. Soc. Rev. 2013, 42, 2016-2038. 80. Everett, E., Fluoride's Effects on the Formation of Teeth and Bones, and the Influence of Genetics. Journal of dental research 2011, 90, 552-560. 81. Ayoob, S.; Gupta, A. K., Fluoride in Drinking Water: A Review on the Status and Stress Effects. Critical Reviews in Environmental Science and Technology 2006, 36, 433-487. 82. Jagtap, S.; Yenkie, M. K.; Labhsetwar, N.; Rayalu, S., Fluoride in Drinking Water and Defluoridation of Water. Chem. Rev. 2012, 112, 2454-2466. 83. Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A., Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038-8155. 84. Fawell, J. K.; Bailey, K., Fluoride in Drinking-Water; World Health Organization, 2006. 85. Badugu, R.; Lakowicz, J. R.; Geddes, C. D., A Wavelength–Ratiometric Fluoride-Sensitive Probe Based on the Quinolinium Nucleus and Boronic Acid Moiety. Sens. Actuators. B Chem 2005, 104, 103-110. 86. Ashokkumar, P.; Weißhoff, H.; Kraus, W.; Rurack, K., Test‐Strip‐Based Fluorometric Detection of Fluoride in Aqueous Media with a Bodipy‐Linked Hydrogen‐Bonding Receptor. Angew. Chem. Int. Ed. 2014, 53, 2225-2229. 87. Cooper, C.; James, T., Selective Fluorescence Detection of Fluoride Using Boronic Acids. Chem. Commun. 1998, 1365-1366. 88. Cheng, X.; Li, S.; Xu, G.; Li, C.; Qin, J.; Li, Z., A Reaction‐Based Colorimetric Fluoride Probe: Rapid 'Naked‐Eye' Detection and Large Absorption Shift. ChemPlusChem 2012, 77, 908-913. 89. Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G., A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angew. Chem. Int. Ed. 2010, 49, 4915-4918. 90. Jeyanthi, D.; Iniya, M.; Krishnaveni, K.; Chellappa, D., Novel Indole Based Dual Responsive 'Turn-on' Chemosensor for Fluoride Ion Detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1269-1274. 91. Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C., A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative. J. Am. Chem. Soc. 2003, 125, 12376-12377. 92. Mahapatra, A. K.; Maiti, K.; Sahoo, P.; Nandi, P. K., A New Colorimetric and Fluorescent Bis (Coumarin) Methylene Probe for Fluoride Ion Detection Based on the Proton Transfer Signaling Mode. J. Lumin. 2013, 143, 349-354. 93. Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H., Highly Selective Two-Photon Chemosensors for Fluoride Derived from Organic Boranes. Org. Lett. 2005, 7, 5481-5484. 94. Lin, Z.-h.; Zhao, Y.-g.; Duan, C.-y.; Zhang, B.-g.; Bai, Z.-p., A Highly Selective Chromo-and Fluorogenic Dual Responding Fluoride Sensor: Naked-Eye Detection of F− Ion in Natural Water Via a Test Paper. Dalton Transactions 2006, 3678-3684. 95. Guha, S.; Saha, S., Fluoride Ion Sensing by an Anion− Π Interaction. J. Am. Chem. Soc. 2010, 132, 17674-17677. 96. Shamsipur, M.; Safavi, A.; Mohammadpour, Z.; Zolghadr, A. R., Fluorescent Carbon Nanodots for Optical Detection of Fluoride Ion in Aqueous Media. Sens. Actuators. B Chem 2015, 221, 1554-1560. 97. Cheng, F.; Bonder, E. M.; Jäkle, F., Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions. J. Am. Chem. Soc. 2013, 135, 17286-17289. 98. Wu, X.; Chen, X.-X.; Song, B.-N.; Huang, Y.-J.; Ouyang, W.-J.; Li, Z.; James, T. D.; Jiang, Y.-B., Direct Sensing of Fluoride in Aqueous Solutions Using a Boronic Acid Based Sensor. Chem. Commun. 2014, 50, 13987-13989. 99. Yamaguchi, S.; Akiyama, S.; Tamao, K., Colorimetric Fluoride Ion Sensing by Boron-Containing Π-Electron Systems. J. Am. Chem. Soc. 2001, 123, 11372-11375. 100. Kubo, Y.; Yamamoto, M.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.; Tamao, K., A Colorimetric and Ratiometric Fluorescent Chemosensor with Three Emission Changes: Fluoride Ion Sensing by a Triarylborane–Porphyrin Conjugate. Angew. Chem. Int. Ed. 2003, 42, 2036-2040. 101. Gupta, M.; Balamurugan, A.; Lee, H.-i., Azoaniline-Based Rapid and Selective Dual Sensor for Copper and Fluoride Ions with Two Distinct Output Modes of Detection. Sens. Actuators. B Chem 2015, 211, 531-536. 102. Kwon, S.-M.; Shin, H.-S., Sensitive Determination of Fluoride in Biological Samples by Gas Chromatography–Mass Spectrometry after Derivatization with 2-(Bromomethyl) Naphthalene. Anal. Chim. Acta 2014, 852, 162-167. 103. Pagliano, E.; Meija, J.; Ding, J.; Sturgeon, R. E.; D'Ulivo, A.; Mester, Z. n., Novel Ethyl-Derivatization Approach for the Determination of Fluoride by Headspace Gas Chromatography/Mass Spectrometry. Anal. Chem. 2012, 85, 877-881. 104. Tao, J.; Zhao, P.; Li, Y.; Zhao, W.; Xiao, Y.; Yang, R., Fabrication of an Electrochemical Sensor Based on Spiropyran for Sensitive and Selective Detection of Fluoride Ion. Anal. Chim. Acta 2016, 918, 97-102. 105. Andreyev, E. A.; Komkova, M. A.; Nikitina, V. N.; Zaryanov, N. V.; Voronin, O. G.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Reagentless Polyol Detection by Conductivity Increase in the Course of Self-Doping of Boronate-Substituted Polyaniline. Anal. Chem. 2014, 86, 11690-11695. 106. Gupta, V. K.; Jain, A. K.; Pal, M. K.; Bharti, A. K., Comparative Study of Fluoride Selective Pvc Based Electrochemical Sensors. Electrochim. Acta 2012, 80, 316-325. 107. Bala, A.; Pietrzak, M.; Zajda, J.; Malinowska, E., Further Studies on Application of Al (Iii)-Tetraazaporphine in Membrane-Based Electrochemical Sensors for Determination of Fluoride. Sens. Actuators. B Chem 2015, 207, 1004-1009. 108. Manibalan, K.; Mani, V.; Huang, S.-T., A Switchable Electrochemical Redox Ratiometric Substrate Based on Ferrocene for Highly Selective and Sensitive Fluoride Detection. RSC. Adv. 2016, 6, 71727-71732. 109. Čerňanská, M.; Tomčík, P.; Jánošíková, Z.; Rievaj, M.; Bustin, D., Indirect Voltammetric Detection of Fluoride Ions in Toothpaste on a Comb-Shaped Interdigitated Microelectrode Array. Talanta 2011, 83, 1472-1475. 110. Aboubakr, H.; Brisset, H.; Siri, O.; Raimundo, J.-M., Highly Specific and Reversible Fluoride Sensor Based on an Organic Semiconductor. Anal. Chem. 2013, 85, 9968-9974. 111. Ćwik, P.; Wawrzyniak, U. E.; Jańczyk, M.; Wróblewski, W., Electrochemical Studies of Self-Assembled Monolayers Composed of Various Phenylboronic Acid Derivatives. Talanta 2014, 119, 5-10. 112. Mani, V.; Li, W.-Y.; Gu, J.-A.; Lin, C.-M.; Huang, S.-T., Electrochemical Off–on Ratiometric Chemodosimeters for the Selective and Rapid Detection of Fluoride. Talanta 2015, 131, 121-126. 113. Aydogan, A.; Koca, A.; Şener, M. K.; Sessler, J. L., Edot-Functionalized Calix [4] Pyrrole for the Electrochemical Sensing of Fluoride in Water. Org. Lett. 2014, 16, 3764-3767. 114. Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Chang, J.-L.; Zen, J.-M., A Dually Functional 4-Aminophenylboronic Acid Dimer for Voltammetric Detection of Hypochlorite, Glucose and Fructose. Microchim. Acta 2017, 184, 4073-4080. 115. Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly (3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324. 116. Fortin, N.; Klok, H.-A., Glucose Monitoring Using a Polymer Brush Modified Polypropylene Hollow Fiber-Based Hydraulic Flow Sensor. ACS Applied Materials & Interfaces 2015, 7, 4631-4640. 117. Komkova, M. A.; Andreyev, E. A.; Nikitina, V. N.; Krupenin, V. A.; Presnov, D. E.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Novel Reagentless Label-Free Detection Principle for Affinity Interactions Resulted in Conductivity Increase of Conducting Polymer. Electroanalysis 2015, 27, 2055-2062. 118. Li, G.; Li, Y.; Peng, H.; Chen, K., Synthesis of Poly(Anilineboronic Acid) Nanofibers for Electrochemical Detection of Glucose. Macromol. Rapid Commun. 2011, 32, 1195-1199. 119. Ma, Y.; Yang, X., One Saccharide Sensor Based on the Complex of the Boronic Acid and the Monosaccharide Using Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2005, 580, 348-352. 120. Manesh, K. M.; Santhosh, P.; Gopalan, A.; Lee, K.-P., Electrospun Poly(Vinylidene Fluoride)/Poly(Aminophenylboronic Acid) Composite Nanofibrous Membrane as a Novel Glucose Sensor. Anal. Biochem. 2007, 360, 189-195. 121. Nikitina, V. N.; Kochetkov, I. R.; Karyakina, E. E.; Yatsimirsky, A. K.; Karyakin, A. A., Tuning Electropolymerization of Boronate-Substituted Anilines: Fluoride-Free Synthesis of the Advanced Affinity Transducer. Electrochem. Commun. 2015, 51, 121-124. 122. Şenel, M.; Nergiz, C.; Dervisevic, M.; Çevik, E., Development of Amperometric Glucose Biosensor Based on Reconstitution of Glucose Oxidase on Polymeric 3-Aminophenyl Boronic Acid Monolayer. Electroanalysis 2013, 25, 1194-1200. 123. Shoji, E.; Freund, M. S., Potentiometric Sensors Based on the Inductive Effect on the Pka of Poly(Aniline):  A Nonenzymatic Glucose Sensor. J. Am. Chem. Soc. 2001, 123, 3383-3384. 124. Vasu, K. S.; Sridevi, S.; Sampath, S.; Sood, A. K., Non-Enzymatic Electronic Detection of Glucose Using Aminophenylboronic Acid Functionalized Reduced Graphene Oxide. Sens. Actuators. B Chem 2015, 221, 1209-1214. 125. Wu, Z.; Zhang, S.; Zhang, X.; Shu, S.; Chu, T.; Yu, D., Phenylboronic Acid Grafted Chitosan as a Glucose-Sensitive Vehicle for Controlled Insulin Release. J. Pharm. Sci. 2011, 100, 2278-2286. 126. Zhou, M.; Lu, F.; Jiang, X.; Wu, Q.; Chang, A.; Wu, W., Switchable Glucose-Responsive Volume Phase Transition Behavior of Poly(Phenylboronic Acid) Microgels. Polymer Chemistry 2015, 6, 8306-8318. 127. Rick, J.; Chou, T.-C., Amperometric Protein Sensor – Fabricated as a Polypyrrole, Poly-Aminophenylboronic Acid Bilayer. Biosens. Bioelectron. 2006, 22, 329-335. 128. Wang, J.-Y.; Chou, T.-C.; Chen, L.-C.; Ho, K.-C., Using Poly(3-Aminophenylboronic Acid) Thin Film with Binding-Induced Ion Flux Blocking for Amperometric Detection of Hemoglobin A1c. Biosens. Bioelectron. 2015, 63, 317-324. 129. Plesu, N.; Kellenberger, A.; Taranu, I.; Taranu, B. O.; Popa, I., Impedimetric Detection of Dopamine on Poly(3-Aminophenylboronic Acid) Modified Skeleton Nickel Electrodes. React. Funct. Polym. 2013, 73, 772-778. 130. Ali, S. R.; Ma, Y.; Parajuli, R. R.; Balogun, Y.; Lai, W. Y. C.; He, H., A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Anal. Chem. 2007, 79, 2583-2587. 131. Hu, L.; Han, S.; Liu, Z.; Parveen, S.; Yuan, Y.; Xu, G., A Versatile Strategy for Electrochemical Detection of Hydrogen Peroxide as Well as Related Enzymes and Substrates Based on Selective Hydrogen Peroxide-Mediated Boronate Deprotection. Electrochem. Commun. 2011, 13, 1536-1538. 132. Wang, C.; Zholudov, Y. T.; Nsabimana, A.; Xu, G.; Li, J., Sensitive and Selective Electrochemical Detection of Artemisinin Based on Its Reaction with P-Aminophenylboronic Acid. Anal. Chim. Acta 2016, 937, 39-42. 133. Liu, Q.; Xiao, K.; Wen, L.; Dong, Y.; Xie, G.; Zhang, Z.; Bo, Z.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano 2014, 8, 12292-12299. 134. Çiftçi, H.; Tamer, U., Electrochemical Determination of Iodide by Poly(3-Aminophenylboronic Acid) Film Electrode at Moderately Low Ph Ranges. Anal. Chim. Acta 2011, 687, 137-140. 135. Jamkratoke, M.; Ruangpornvisuti, V.; Tumcharern, G.; Tuntulani, T.; Tomapatanaget, B., A-D-a Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-on Cyanide Probes in Water. The Journal of Organic Chemistry 2009, 74, 3919-3922. 136. Deore, B.; Freund, M. S., Saccharide Imprinting of Poly(Aniline Boronic Acid) in the Presence of Fluoride. Analyst 2003, 128, 803-806. 137. Deore, B. A.; Freund, M. S., Self-Doped Polyaniline Nanoparticle Dispersions Based on Boronic Acid−Phosphate Complexation. Macromolecules 2009, 42, 164-168. 138. Deore, B. A.; Hachey, S.; Freund, M. S., Electroactivity of Electrochemically Synthesized Poly(Aniline Boronic Acid) as a Function of Ph: Role of Self-Doping. Chem. Mater. 2004, 16, 1427-1432. 139. Deore, B. A.; Yu, I.; Freund, M. S., A Switchable Self-Doped Polyaniline:  Interconversion between Self-Doped and Non-Self-Doped Forms. J. Am. Chem. Soc. 2004, 126, 52-53. 140. Wang, F.; Zou, F.; Yu, X.; Feng, Z.; Du, N.; Zhong, Y.; Huang, X., Electrochemical Synthesis of Poly(3-Aminophenylboronic Acid) in Ethylene Glycol without Exogenous Protons. PCCP 2016, 18, 9999-10004. 141. McCreery, R. L., Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646-2687. 142. Yan, X.; Jia, Y.; Odedairo, T.; Zhao, X.; Jin, Z.; Zhu, Z.; Yao, X., Activated Carbon Becomes Active for Oxygen Reduction and Hydrogen Evolution Reactions. Chem. Commun. 2016, 52, 8156-8159. 143. Niu, X.; Shi, L.; Li, X.; Pan, J.; Gu, R.; Zhao, H.; Qiu, F.; Yan, Y.; Lan, M., Simple Anodization of Home-Made Screen-Printed Carbon Electrodes Makes Significant Activity Enhancement for Hydrogen Evolution: The Synergistic Effect of Surface Functional Groups, Defect Sites, and Hydrophilicity. Electrochim. Acta 2017, 235, 64-71. 144. Naohiro, K.; Kazuhisa, H., Fluorescence-Responsive H2po4− Receptor Based on Macrocyclic Boron Complex. Chem. Lett. 2006, 35, 536-537. 145. Cabell, L. A.; Monahan, M.-K.; Anslyn, E. V., A Competition Assay for Determining Glucose-6-Phosphate Concentration with a Tris-Boronic Acid Receptor. Tetrahedron Lett. 1999, 40, 7753-7756. 146. Cumba, L. R.; Foster, C. W.; Brownson, D. A. C.; Smith, J. P.; Iniesta, J.; Thakur, B.; do Carmo, D. R.; Banks, C. E., Can the Mechanical Activation (Polishing) of Screen-Printed Electrodes Enhance Their Electroanalytical Response? Analyst 2016, 141, 2791-2799. 147. Vishnu, N.; Kumar, A. S.; Pillai, K. C., Unusual Neutral Ph Assisted Electrochemical Polymerization of Aniline on a Mwcnt Modified Electrode and Its Enhanced Electro-Analytical Features. Analyst 2013, 138, 6296-6300. 148. Baskar, S.; Liao, C.-W.; Chang, J.-L.; Zen, J.-M., Electrochemical Synthesis of Electroactive Poly(Melamine) with Mechanistic Explanation and Its Applicability to Functionalize Carbon Surface to Prepare Nanotube–Nanoparticles Hybrid. Electrochim. Acta 2013, 88, 1-5. 149. Eftekhari, A.; Afshani, R., Electrochemical Polymerization of Aniline in Phosphoric Acid. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3304-3311. 150. Engblom, S. O., The Phosphate Sensor. Biosens. Bioelectron. 1998, 13, 981-994. 151. Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P., Rational Design of a Fluorescence-Turn-on Sensor Array for Phosphates in Blood Serum. Angew. Chem. Int. Ed. 2007, 46, 7849-7852. 152. Mak, W. C.; Chan, C.; Barford, J.; Renneberg, R., Biosensor for Rapid Phosphate Monitoring in a Sequencing Batch Reactor (Sbr) System. Biosens. Bioelectron. 2003, 19, 233-237. 153. Cheng, W.-L.; Sue, J.-W.; Chen, W.-C.; Chang, J.-L.; Zen, J.-M., Activated Nickel Platform for Electrochemical Sensing of Phosphate. Anal. Chem. 2010, 82, 1157-1161. 154. Lee, W. H.; Lee, J.-H.; Bishop, P. L.; Papautsky, I., Biological Application of Micro-Electro Mechanical Systems Microelectrode Array Sensors for Direct Measurement of Phosphate in the Enhanced Biological Phosphorous Removal Process. Water Environ. Res 2009, 81, 748-754. 155. Murphy, J.; Riley, J. P., A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31-36. 156. Quintana, J. B.; Rodil, R.; Reemtsma, T., Determination of Phosphoric Acid Mono- and Diesters in Municipal Wastewater by Solid-Phase Extraction and Ion-Pair Liquid Chromatography−Tandem Mass Spectrometry. Anal. Chem. 2006, 78, 1644-1650. 157. Colina, M.; Gardiner, P. H. E., Simultaneous Determination of Total Nitrogen, Phosphorus and Sulphur by Means of Microwave Digestion and Ion Chromatography. J. Chromatogr. A 1999, 847, 285-290. 158. Cheng, W.-L.; Chang, J.-L.; Su, Y.-L.; Zen, J.-M., Facile Fabrication of Zirconia Modified Screen-Printed Carbon Electrodes for Electrochemical Sensing of Phosphate. Electroanalysis 2013, 25, 2605-2612. 159. Mishra, R. K.; Hubble, L. J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M. M.; Kyratzis, I. L.; Wang, J., Wearable Flexible and Stretchable Glove Biosensor for on-Site Detection of Organophosphorus Chemical Threats. ACS Sensors 2017, 2, 553-561. 160. Warwick, C.; Guerreiro, A.; Gomez-Caballero, A.; Wood, E.; Kitson, J.; Robinson, J.; Soares, A., Conductance Based Sensing and Analysis of Soluble Phosphates in Wastewater. Biosens. Bioelectron. 2014, 52, 173-179. 161. Rahman, M. A.; Park, D.-S.; Chang, S.-C.; McNeil, C. J.; Shim, Y.-B., The Biosensor Based on the Pyruvate Oxidase Modified Conducting Polymer for Phosphate Ions Determinations. Biosens. Bioelectron. 2006, 21, 1116-1124. 162. Berchmans, S.; Issa, T. B.; Singh, P., Determination of Inorganic Phosphate by Electroanalytical Methods: A Review. Anal. Chim. Acta 2012, 729, 7-20. 163. Law al, A. T.; Adeloju, S. B., Progress and Recent Advances in Phosphate Sensors: A Review. Talanta 2013, 114, 191-203. 164. Warwick, C.; Guerreiro, A.; Soares, A., Sensing and Analysis of Soluble Phosphates in Environmental Samples: A Review. Biosens. Bioelectron. 2013, 41, 1-11. 165. Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P., Fluoride Ion Complexation and Sensing Using Organoboron Compounds. Chem. Rev. 2010, 110, 3958-3984. 166. Tharmaraj, V.; Pitchumani, K., D-Glucose Sensing by (E)-(4-((Pyren-1-Ylmethylene)Amino)Phenyl) Boronic Acid Via a Photoinduced Electron Transfer (Pet) Mechanism. RSC. Adv. 2013, 3, 11566-11570. 167. Wu, X.; Li, Z.; Chen, X.-X.; Fossey, J. S.; James, T. D.; Jiang, Y.-B., Selective Sensing of Saccharides Using Simple Boronic Acids and Their Aggregates. Chem. Soc. Rev. 2013, 42, 8032-8048. 168. Raj, M. A.; John, S. A., Fabrication of Electrochemically Reduced Graphene Oxide Films on Glassy Carbon Electrode by Self-Assembly Method and Their Electrocatalytic Application. The Journal of Physical Chemistry C 2013, 117, 4326-4335. 169. Fabre, B.; Hauquier, F., Boronic Acid-Functionalized Oxide-Free Silicon Surfaces for the Electrochemical Sensing of Dopamine. Langmuir 2017, 33, 8693-8699. 170. Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S. Z., Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11, 7293-7300.
This thesis describes the oxygen, boronic acid functionalization of screen printed carbon electrode (SPCE) and utilization of those functional moieties for versatile sensor applications. In-situ generated oxygen functionalities along with edge/defect sites of preanodized SPCE (SPCE*) is used for metal free oxidation of poly aromatic hydrocarbons (PAHs). In later sections, we report preparation of stimuli responsive boronic acid based probes on SPCE via both electrochemical as well as chemical routes. In the electrochemical method, 4-Aminophenylboronic acid (4-APBA) has been dimerized and polymerized on SPCE and SPCE* with or without fluoride. The dimer-modified electrode possesses dual functionalities (R-N=N-R' and -B(OH)2) which makes its suitable for selective detection of hypochlorite (i.e., free chlorine), fluoride and sugar molecules, respectively. In chemical method, a new approach for rapid oxidative polymerization of aminophenylboronic acid is described via reduction of surface oxygen functional groups of SPCE* and boron-phosphate complexation. The resulting polymer possesses nanofiber morphology with multiple functional moieties such as imine, azo and boronic acid (-NH+-, -N=N- and -B(OH)2. This has been utilized for direct electro-catalytic detection of Free-Cl, NADH and indirect detection of fluoride ion and fructose by using Fe(CN)63-/4- as redox probe. In continuation of above studies, a voltammetric sensor for determination of phosphate anion (Pi) was developed on the screen printed carbon electrode/anthracene boronic acid (SPCE/ANBA) modified electrode. The complexation of ANBA with Pi through specific BA-Pi binding could cause the quinone formation, which was utilized for Pi detection.
Rights: 同意授權瀏覽/列印電子全文服務,2021-01-15起公開。
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8103051005-1.pdf6.05 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.