Please use this identifier to cite or link to this item:
標題: Preparation of copper / polymelamine composite electrode for sensor application
作者: Jhe-Wei Yang
關鍵字: 三聚氰胺;硫醇化合物;胺基酸;碘化銅;melamine;thiols;amino acid;CuI
引用: [1] 工業材料雜誌第288期 [2] Murat Atesa, A. Sezai Saracb∗, 'Conducting polymer coated carbon surfaces and biosensor applications', Progress in Organic Coatings, 2009, 66, pp337-358. [3] 蔡東孟, '利用高分子薄膜修飾電極偵測鋅及維生素C之研究', 國立中興大學化學系碩士論文, 1997. [4] Baskar, S., Chang, J. L., Zen, J. M., 'Simultaneous detection of NADH and H2O2 using flow injection analysis based on a bifunctional poly(thionine)-modified electrode', Biosensors and Bioelectronics, 2012, 33, pp95-99. [5] K. Senthilkumar, 'Electrochemical sensing application based on an azo/hydrazo functional group containing PolyMelamine modified screen printed carbon electrode and electrogenerated chlorine assisted immobilization of 2,8-dihydroxyadenine,' 國立中興大學化學系博士論文, 2014. [6] Saeed Shahrokhian, Masoumeh Ghalkhani, Hamed Balotf, Razieh Salimian, 'Application of glassy carbon electrode modified with a carbon nanoparticle/melamine thin film for voltammetric determination', Journal of Electroanalytical Chemistry, 2016, 780, pp126-133. [7] Pankaj Gupta, Rajendra N. Goyal*, 'Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin', Talanta, 2014, 120, pp17-22. [8] Srinivasan Kesavan, Deivasigamani Ranjith Kumar, Yong Rok Leea, Jae-Jin Shim∗ , 'Determination of tetracycline in the presence of major interference inhuman urine samples using polymelamine/electrochemically reducedgraphene oxide modified electrode,' Sensors and Actuators B, 2017, 241, pp455-465. [9] Selvakumar Palanisamy, Sayee Kannan Ramaraj, Shen-Ming Chen, Te-Wei Chiu, Vijayalakshmi Velusamy, Thomas C.K. Yang, Tse-Wei Chen, Sonadevi Selvam, 'One pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles composite for sensitive and low level detection of catechol', Journal of Colloid and Interface Science, 2017, 496, pp364-370. [10] 吳俊宏, '金銅合金奈米孔洞電極於分析化學上的應用', 國立中興大學化學系碩士論文, 2015. [11] 彭崇文, '電合成奈米碳材之電化學放光性質探討與應用', 國立中興大學化學系碩士論文, 2015. [12] Qunyan Xiao, Huiling Gao, Qipeng Yuan, Chao Lu, Jin-Ming Lin, 'High-performance liquid chromatography assay of cysteine and homocysteine using fluorosurfactant-functionalized gold nanoparticles as postcolumn resonance light scattering reagents' , Journal of Chromatography A, 2013, 1274, pp145-150. [13] B. Selvaraj, 'Electrochemical synthesis of advanced functional materials base on electroactive polymers for the electrochemical sensing applications', 國立中興大學化學系博士論文, 2013. [14] Selvaraj Baskar, Chen-Wei Liao, Jen-Lin Chang, Jyh-Myng Zen, 'Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube–nanoparticles hybrid', Electrochimica Acta, 2013, 88, pp1-5. [15] Adelio Rigo, Alessandra Corazza, Maria Luisa di Paolo a, Monica Rossetto, Raffaella Ugolini, Marina Scarpa*, 'Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation', Journal of Inorganic Biochemistry, 2004, 98, pp1495-1501. [16] Hard and Soft Acids and Bases - Chemwiki., [17] Selvaraj Basker, Jen-Lin Chang, Jyh-Mying Zen*, 'Extremely stable copper-polymelamine composite material for amperometric hydrogen peroxide sensing', Journal of polymer science, 2013, 51, pp1639-1646. [18] Zekerya Dursun∗, Gürel Ni¸sli, 'Voltammetric behavior of copper(I) oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid', Talanta, 2004, 63, pp873-878. [19] YongPing Dong∗, LiZhai Pei∗, XiangFeng Chu, WangBing Zhang, QianFeng Zhang, 'Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode', Electrochimica Acta, 2010, 55, pp5135-5141. [20] Cátia Crispilho Corrêa, Sergio Augusto Venturinelli Jannuzzi, Murilo Santhiago, Ronaldo Adriano Timm, André Luiz Barboza Formiga∗, Lauro Tatsuo Kubota∗∗, 'Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of L-cysteine', Electrochimica Acta, 2013, 113, pp332-339. [21] Naiara Hernández-Ibáñez, Ignacio Sanjuán, Miguel Ángel Montiel, Christopher W. Foster, Craig E. Banks, Jesús Iniesta*, 'L-Cysteine determination in embryo cell culture media using Co (II)-phthalocyanine modified disposable screen-printed electrodes', Journal of Electroanalytical Chemistry, 2016, 780, pp303-310. [22] Masoumeh Taei*, F. Hasanpour, S. Habibollahi, L. Shahidi, 'Simultaneous electrochemical sensing of cysteine, uric acid and tyrosine using a novel Au-nanoparticles/poly-Trypan Blue modified glassy carbon electrode', Journal of Electroanalytical Chemistry, 2017, 789, pp140-147. [23] 林格吟, '奈米銅網版印刷電極結合高效能液相層析法偵測胺基酸之研究', 國立中興大學化學系碩士論文, 2004. [24] Zen, J. M., Hsu, C. T., Senthil Kumar, A., Lyuu, H. J., Lin, K. Y., 'Amino acid analysis using disposable copper nanoparticle plated electrodes', Analyst, 2004, 129, pp841-845. [25] Innocenzo G. Casella*, Maria Gatta, Tommaso R.I. Cataldi., 'Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography' , Journal of Chromatography A, 2000, pp57-67. [26] Ming-Yuan Lee, Shinn-JyhDing, Ching-ChouWu∗, JinchyauPeng∗∗, Chiuan-Ting Jiang, Chi-ChungChou, 'Fabrication of nanostructured copper phosphate electrodes for the detection of α-amino acids', Sensors and Actuators B, 2015, 206, pp584-591. [27] Kiyohito Sato, Ji-Ye Jin*, Toyohide Takeuchi, Tomoo Miwa, Yuji Takekoshi, Susumu Kanno, Shoji Kawase, 'Nickel–titanium alloy electrodes for stable amperometric detection of underivatized amino acids in anion-exchange chromatography', Talanta, 2000, 53, pp1037-1044. [28] Jiha Choi, D. Amaranatha Reddy, M. Jahurul Islam, Bora Seo, Sang Hoon Joob,Tae Kyu Kim,∗, 'Green synthesis of the reduced graphene oxide–CuI quasi-shell–corenanocomposite: A highly efficient and stable solar-light-inducedcatalyst for organic dye degradation in water', Applied Surface Science, 2015, 358, pp159-167. [29] S. Gorer, G. S. Hsiao, M. G. Anderson, R. M. Stiger, J. Lee and R. M. Penner*, 'A hybrid electrochemical/chemical synthesis of semiconductor nanocrystals on graphite: a new role for electrodeposition in materials synthesis', Electrochimica Acta, 1998, 43, pp2799-2809. [30] 徐振騰, '拋棄式電化學感測器之研發與應用', 國立中興大學化學系博士論文, 2006. [31] P.M. Sirimanne, M. Rusop, T. Shirata, T. Soga, T. Jimbo, 'Characterization of CuI thin films prepared by different techniques', Materials Chemistry and Physics, 2003, 80, pp461-465. [32] Fatin Saiha Omar, Navaneethan Duraisamy, K. Ramesh, S.Ramesh , 'Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH)', Biosensors and Bioelectronics, 2016, 79, pp763-775. [33] Beatriu Prieto-Simón, Esteve Fàbregas*, 'Comparative study of electron mediators used in the electrochemical oxidation of NADH', Biosensors and Bioelectronics, 2004, 19, pp1131-1138.
We present here a simple process to prepare copper-PolyMelamine composite modified screen printed carbon electrode (SPCE*/PolyMel/Cu) for developing as thiol sensor. The electrode involves first polymerization of melamine on an SPCE* (PolyMel-SPCE*) followed by electrodeposition of copper. The Cu-PolyMel-SPCE* was found to have good electrocatalytic activity towards the detection of thiol compounds. Compared to those of Cu-deposited SPCE* (i.e., without PolyMelamine), much better performance was observed at the Cu-PolyMel-SPCE* for the detection of cysteine, homocysteine, cysteamine and thioglycolic acid (TGA). Flow injection analysis was further applied for increasing the detection sensitivity. The detection limit (S/N = 3) was calculated as 4.29, 5.15, 41.33 and 12.55 μM for cysteine, homocysteine, TGA and cysteamine, respectively. A wide linear calibration range from 50 μM to 1.5 mM with a regression coefficient of 0.998 under optimal conditions of detection potential of 0.1 V (vs. Ag/AgCl) and flow rate of 0.8 mL/min was achieved. Also, we can control the amount of Cu deposited on SPCE*/PolyMelamine electrode to selectively detect thiols or amino acids. The same SPCE*/PolyMel was further used for the synthesis of CuI and was demonstrated for use as photo detector.

本論文成功製備出銅/PolyMelamine複合電極,並應用於硫醇類及胺基酸之偵測。PolyMelamine與銅形成穩定錯合物,進而增加銅奈米粒子(約30 nm)的穩定性。但由於銅與硫醇基間具有強作用力,因此若鍍銅量過多將導致電極表面未與PolyMelamine形成錯合物之銅奈米粒子崩落,故在偵測硫醇類時,偏向控制在較低鍍銅量(約電鍍40秒)。此電極亦成功與流動系統結合,開發出對於硫醇類具有極高選擇性之感測器,同時具有良好線性範圍(50-1500 μM)及偵測極限。四種硫醇類Cysteine、Homocysteine、Cysteamine、Thioglycolic acid (TGA)之偵測極限分別為4.29、5.15、12.55、31.33 μM。此外,結合照光鍍銅技術,可應用於選擇性的偵測硫醇化合物或是各類胺基酸。再者,利用PolyMelamine電極鍍銅時能夠產生較多的一價銅的形式,成功製備出具有光電效應之光電半導體CuI,其應用於光偵測具有良好的穩定性(RSD=4.2%, n=7)。
Rights: 同意授權瀏覽/列印電子全文服務,2019-08-02起公開。
Appears in Collections:化學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7103051011-1.pdf11.63 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.