Please use this identifier to cite or link to this item:
標題: Golf-ball Assisted Atmospheric Pressure Ionization of Liquid Chromatography Tandem Mass Spectrometry for Analysis of Amino Acids in Complex Samples and Carotenoids in Food
作者: Yen-Hsien Li
關鍵字: 高爾夫球;電灑游離法;大氣壓化學游離法;胺基酸;類胡蘿蔔素;尿液;血清;食品;Golf-ESI;Golf-APCI;Amino Acids;Carotenoids;tea;urine;serum
引用: 1. Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth, H. R., New Developments in Biochemical Mass Spectrometry: Electrospray Ionization. Anal. Chem. 1990, 62, 882-899. 2. Cech, N. B.; Enke, C. G., Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2001, 20, 362-387. 3. Schneider, B. B.; Javaheri, H.; Covey, T. R., Ion sampling effects under conditions of total solvent consumption. Rapid Commun. Mass Spectrom. 2006, 20, 1538–1544. 4. Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D., Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface. J. Am. Soc. Mass. Spectrom. 2007, 18, 1582–1590. 5. Vidal-de-Miguel, G.; Macia, M.; Pinacho, P.; Blanco, J., Low-sample flow secondary electrospray ionization: Improving vapor ionization efficiency. Anal. Chem. 2012, 84, 8475−8479. 6. Covey, T. R.; Thomson, B. A.; Schneider, B. B., Atmospheric pressure ion sources. Mass Spectrom. Rev. 2009, 28, 870– 897. 7. Guevremont, R.; Purves, R. W., Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer. Rev. Sci. Instrum. 1999, 70, 1370-1383. 8. Willoughby, R. C.; Browner, R. F., Monodisperse aerosol generation interface for combining liquid chromatography with mass spectrometry. 1984, Anal. Chem., 2626–2631. 9. Schlichting, H., Boundary-Layer Theory. seventh edition ed.; McGraw-Hill: New York, 1979, 24-46. 10. Choi, J.; Jeon, W.-P.; Choi, H., Mechanism of drag reduction by dimples on a sphere. Phys. Fluids 2006, 18, 041702. 11. White, F. M., Fluid Mechanics. seventh edition ed.; McGraw-Hill: New York, 2009, 528-608. 12. Meher, A. K.; Chen, Y.-C., Electrospray Modifications for Advancing Mass Spectrometric Analysis. Mass Spectrometry 2017, 6, S0057-S0057. 13. Zeleny, J., Instability of Electrified Liquid Surfaces. Phys. Rev. 1917, 10, 1-6. 14. Mandal, M. K.; Hiraoka, K., Ambient Ionization Mass Spectrometry, Royal Society of Chemistry 2014, 267-306. 15. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., Molecular Beams of Macroions. The Journal of Chemical Physics 1968, 49, 2240-2249. 16. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88, 4451–4459. 17. Yamashita, M.; Fenn, J. B., Negative ion production with the electrospray ion source. The Journal of Physical Chemistry 1984, 88, 4671–4675. 18. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; M.Whitehouse, C., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71. 19. Kebarle, P.; Tang, L., From ions in solution to ions in the gas phase. Anal. Chem. 1993, 65, 972A-986A. 20. Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-ion spray: a comparison of mechanisms and performance. Anal. Chem. 1991, 63, 1989-1998. 21. Taylor, G., Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society of London. Series A 1964, 280, 383-397. 22. Rohner, T. C.; Lion, N.; Girault, H. H., Electrochemical and theoretical aspects of electrospray ionisation. Phys. Chem. Chem. Phys. 2004, 6, 3056-3068. 23. Nguyen, S.; Fenn, J. B., Gas-phase ions of solute species from charged droplets of solutions. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1111-1117. 24. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S., Unraveling the mechanism of electrospray ionization. Anal. Chem. 2013, 85, 2-9. 25. Shahin, M. M., Mass‐Spectrometric Studies of Corona Discharges in Air at Atmospheric Pressures. The Journal of Chemical Physics 1966, 45, 2600-2605. 26. Shahin, M. M., Use of Corona Discharges for the Study of Ion—Molecule Reactions. The Journal of Chemical Physics 1967, 47, 4392-4398. 27. Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N., New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure. Anal. Chem. 1973, 45, 936–943. 28. Horning, E. C.; Carroll, D. I.; Dzidic, I.; Haegele, K. D.; Horning, M. G.; Stillwell, R. N., Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J. Chromatogr. Sci. 1974, 12, 725-729. 29. Horning, E. C.; Carroll, D. I.; Dzidic, I.; Haegele, K. D.; Horning, M. G.; Stillwell, R. N., Liquid chromatograph—mass spectrometer—computer analytical systems: A continuous-flow system based on atmospheric pressure ionization mass spectrometry. J. Chromatogr. A 1974, 99-21. 30. Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C., Atmospheric Pressure Ionization Mass Spectrometry- Corona Discharge ion Source for Use in Liquid Chromatograph-Mass Spectrometer-Computer Analytical System. Anal. Chem. 1975, 47, 2369-2373. 31. Ion Max and Ion Max-S API Source Hardware Manual. Thermo Scientific: 2009. 32. Trancossi, M., An Overview of Scientific and Technical Literature on Coanda Effect Applied to Nozzles. SAE Technical Paper 2011, 1, 443-531. 33. Munson, B. R.; Young, D. F.; T. H. Okiishi, Fundamentals of fluid mechanics. fourth edition ed.; John Wiley & Sons: New York, 2002, 34, 99-106. 34. Kimura, T.; Sumiyama, M., A statistical study on reduction of drag force for golf balls. Memoirs of Fukui University of Technology 2004, 34, 99-106. 35. Steel, C.; Henchman, M., Understanding the Quadrupole Mass Filter through Computer Simulation. J. Chem. Educ. 1998, 75, 1049-1054. 36. Domon, B.; Aebersold, R., Mass spectrometry and protein analysis. Science 2006, 312, 212-217. 37. Fraser, K.; Harrison, S. J.; Lane, G. A.; Otter, D. E.; Hemar, Y.; Quek, S. Y.; Rasmussen, S., Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chem. 2012, 134, 1616-23. 38. Soga, T.; Heiger, D. N., Amino Acid Analysis by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Anal. Chem. 2000, 72, 1236-1241. 39. Ohlenbuscha, G.; Zwienera, C.; Meckenstockb, R. U.; Frimmela, F. H., Identification and quantification of polar naphthalene derivatives in contaminated groundwater of a former gas plant site by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2002, 967, 201–207. 40. Kruve, A.; Leito, I.; Herodes, K., Combating matrix effects in LC/ESI/MS: the extrapolative dilution approach. Anal. Chim. Acta 2009, 651, 75-80. 41. Stahnke, H.; Kittlaus, S.; Kempe, G.; Alder, L., Reduction of matrix effects in liquid chromatography-electrospray ionization-mass spectrometry by dilution of the sample extracts: how much dilution is needed? Anal. Chem. 2012, 84, 1474-82. 42. Dou, J.; Lee, V. S. Y.; Tzen, J. T. C.; Lee, M.-R., Identification and Comparison of Phenolic Compounds in the Preparation of Oolong Tea Manufactured by Semifermentation and Drying Processes. J. Agric. Food Chem. 2007, 2007, 7462−7468. 43. Tang, X.; Gu, Y.; Nie, J.; Fan, S.; Wang, C., Quantification of Amino Acids in Rat Urine by Solid-Phase Extraction and Liquid Chromatography/Electrospray Tandem Mass Spectrometry: Application to Radiation Injury Rat Model. J. Liq. Chromatogr. Rel. Technol. 2014, 37, 951-973.
In this study, a universal home-made golf ball-assisted electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) for liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine 20 trace amino acids in complex samples and 8 carotenoids in food. In this study we propose a novel method using a home-made golf ball positioned between the ion source and the inlet of the mass analyzer to hydrodynamically focus the ions passing through the golf ball to improve ion transmission. The results of the empirical experiments show that the ion plume of ESI passing through a golf ball could be focused on the inlet of the mass analyzer. The developed device can enhance the ion transmission efficiency and thus increase the signal intensity. The results showed that the analytical performance of the determination of the 20 amino acids in tea, urine and serum samples using the home-made golf ball-assisted ESI source is better than these obtained through commercial ESI source. The signal intensities of the 20 amino acids were enhanced by factors of 2-2700, 11-2525, and 31-342680 in Oolong tea, urine and serum analyses, respectively. The precision of the proposed method ranged from 1 to 9%, 0.4 to 9% and 0.4 to 8% at low, medium and high concentration levels of amino acids, respectively.
A universal home-made golf ball-assisted atmospheric pressure chemical ionization for LC-MS/MS was developed to determine 8 carotenoids in food. The results demonstrated the analytical performance of the proposed golf ball-assisted APCI source is better than those obtained using the commercial APCI source. The signal intensities of the carotenoids were enhanced by factors of 2-7965 in food. The results showed low detection limits are obtained from 0.01 to 0.4 ng mL-1 with good linearity (10-1000 ng mL-1) and relative standard deviations less than 9%. The home-made golf ball-assisted ESI / APCI source not only can enhance ion transmission efficiency, but it is also an easy, convenient and inexpensive device. Form the results demonstrate that the golf-ball-assisted ESI /APCI system is highly effective in analyzing trace analytes in complex matrix.

本研究應用高爾夫球面流體力學原理,研發高爾夫球體輔助電灑游離法 / 大氣壓化學游離法,將呈羽流狀噴灑的分析物離子有效聚集至球體後,再進入質譜儀,改善離子源之離子傳送效率。將高爾夫球體輔助大氣壓游離法結合液相層析串聯質譜術分析複雜樣品中胺基酸與食品中類胡蘿蔔素並與傳統大氣壓游離法進行比較。實驗結果得知,通過高爾夫球體的離子羽流可聚焦至質譜進樣口,高爾夫球體裝置有助於匯集大部分離子,進而避免離子量損失。從分析複雜樣品烏龍茶、人體尿液及血清中20種胺基酸類化合物之研究結果可得知,不論分析烏龍茶、尿液或人體血清,於高爾夫球體輔助電灑游離法所得之訊號量皆明顯高於傳統電灑游離法,其訊號增加倍數分別為2-2700、11-2525與31-342680倍。配製低、中、高三種不同濃度20種胺基酸混合標準品評估精密度,所測得之精密度範圍分別為1至9% 之間、0.4至9% 之間及1至8% 之間。高爾夫球體輔助大氣壓化學游離法結合液相層析串連質譜技術分析食品中8種類胡蘿蔔素,於高爾夫球體輔助大氣壓化學游離法所得之訊號量皆明顯高於傳統大氣壓化學游離法,其訊號增加倍數為2-7965倍。八種類胡蘿蔔素之線性範圍為10至1000 ng mL-1,偵測極限介於0.01至0.4 ng mL-1之間、精密度小於9%。本研究所開發之高爾夫球體裝置可與現有游離源技術結合,成功有效地聚焦離子量,提升訊號量,改善離子傳送效率,未來並可將此技術應用於檢測複雜基質樣品中微量成分分析。
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:化學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-8097051102-1.pdf2.86 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.