Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96367
標題: 台灣五葉松、台灣二葉松及其內生菌發酵液成分分析及利用大鼠血管平滑肌細胞鈣離子螢光平台開發台灣五葉松松針中具電位型鈣離子通道抑制之活性成分
The chemical composition of Pinus morrisonicola Hayata, Pinus taiwanensis Hayata and their endophyte-fermented liquor and the identification of voltage-operated calcium channel blockers form the needle of Pinus morrisonicola Hayata through the calcium fluorescent signal in rat vascular smooth muscle cell
作者: 陳冠亨
Guan-Heng Chen
關鍵字: 台灣五葉松;台灣二葉松;鈣離子螢光;電位控制鈣離子通道;高血壓;P. morrisonicola Hayata;P. taiwanensis Hayata;calcium fluorescent;voltage-operated calcium channel;hypertension
引用: Research background [1] Wilson JP, Knoll AH, Holbrook NM, Marshall CR. Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology 2008;34:472-93. [2] Missouri Botanical Garden, 2017. Available at http://www.missouribotanicalgarden.org/2017 Accessed May 22, 2017. [3] McCormick JA, John W. A subdioecioius population of Pinus cembroides in southeast Arizona. Ohio Sci 1963;63:159-63. [4] Flores-Renteria L, Molina-Freaner F, Whipple AV, Gehring CA, Dominguez CA. Sexual stability in the nearly dioecious Pinus Johannis (Pinaceae). Am J Bot 2013;100:602-12. [5] Li B, Shen YH, He YR, Zhang WD. Chemical constituents and biological activities of Pinus species. Chem Biodivers 2013;10:2133-60. [6] Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Bio Med 1999;27:704-24. [7] Ustun O, Senol FS, Kurkcuoglu M, Orhan IE, Kartal M, Baser KHC. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind Crop Prod 2012;38:115-23. [8] Canali R, Comitato R, Schonlau F, Virgili F. The anti-inflammatory pharmacology of Pycnogenol in humans involves COX-2 and 5-LOX mRNA expression in leukocytes. Int Immunopharmacol 2009;9:1145-9. [9] Liu X, Wei J, Tan F, Zhou S, Wurthwein G, Rohdewald P. Pycnogenol, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci 2004;74:855-62. [10] Yang X, Zhao HT, Wang J, Meng Q, Zhang H, Yao L, Zhang YC, Dong AJ, Ma Y, Wang ZY, Xu DC, Ding Y. Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China. J Med Plants Res 2010;4:1668-72. [11] Choi EM. Antinociceptive and antiinflammatory activities of pine (Pinus densiflora) pollen extract. Phytother Res 2007;21:471-5. [12] Kwak CS, Moon SC, Lee MS. Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr Cancer 2006;56:162-71. [13] Roriz M, Santos C, Vasconcelos MW. Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster). Exp Parasitol 2011;128:357-64. [14] Won JN, Lee SY, Song DS, Poo H. Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. J Microbiol Biotechnol 2013;23:125-30. [15] Chen YH, Hsieh PC, Mau JL, Sheu SC. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. Lwt-Food Sci Technol 2011;44:1477-81. [16] Liu GY, Wang ZW. Pinus morrisonicola Hayata extracts inhibit cell proliferation and promote apoptosis of human promyelocytic HL-60 leukemia cells. Eur J Cancer 2014;50:S44. [17] Liao CL, Chen CM, Chang YZ, Liu GY, Hung HC, Hsieh TY, Lin CL. Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression. J Agric Food Chem 2014;62:10458-67. [18] Yen GC, Duh PD, Huang DW, Hsu CL, Fu TY. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2008;46:175-85. [19] Cheng YS, Chao YL. Neutral part of the bark of Pinus taiwanensis Hayata. J Chin Chem Soc-Taip 1979;26:163-7. [20] Gabb GM, Mangoni AA, Arnolda L. Guideline for the diagnosis and management of hypertension in adults-2016. Med J Aust 2017;206. [21] Lawes CM, Vander Hoorn S, Rodgers A. International Society of H. Global burden of blood-pressure-related disease, 2001. Lancet 2008;371:1513-8. [22] Xiong XJ, Yang XC, Liu YM, Zhang Y, Wang PQ, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res 2013;36:570-9. [23] James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC, Svetkey LP, Taler SJ, Townsend RR, Wright JT, Narva AS, Ortiz E. 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). Jama-J Am Med Assoc 2014;311:507-20. [24] Catterall WA. Voltage-gated clacium channels. Cold Spring Harbor Perspect Biol 2011;3. [25] Fatt P, Katz B. The electrical properties of crustacean muscle fibres. J Physiol 1953;120:171-204. [26] Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca2+ channel in vertebrate sensory neurones. Nature 1984;310:501-2. [27] Dolphin AC. G protein modulation of voltage-gated calcium channels. J Pharmacol Exp Ther 2003;55:607-23. [28] Serysheva, II, Ludtke SJ, Baker MR, Chiu W, Hamilton SL. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc Natl Acad Sci USA 2002;99:10370-5. [29] Gene G, Kiarash S, Bruce L, Robert B. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals 2013;6:788-812. [30] Dolphin AC. A short history of voltage-gated calcium channels. Br J Pharmacol 2006;147 Suppl 1:S56-62. [31] Triggle DJ. Calcium channel antagonists: Clinical uses-past, present and future. Biochem Pharmacol 2007;74:1-9. [32] Jörg Striessnig MG, Jörg M, Steffen H, Martina JS, Hartmut G. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 1998;19:108-15. [33] Russell RP. Side effects of calcium channel blockers. Hypertension 1988;11:II42-4. [34] Brini M, Carafoli E. The Plasma Membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Csh Perspect Biol 2011;3. [35] Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ 2003;27:201-6. [36] Boguski MS, Mccormick F. Proteins regulating Ras and its relatives. Nature 1993;366:643-54. [37] Chikumi H, Fukuhara S, Gutkind JS. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation - Evidence of a role for focal adhesion kinase. J Biol Chem 2002;277:12463-73. [38] Siehler S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Brit J Pharmacol 2009;158:41-9. [39] Takefuji M, Yura Y, Kaibuchi K, Murohara T. RhoGEF-mediated vasoconstriction in hypertension. Hypertens Res 2013;36:930-1. [40] Huang QQ, Fisher SA, Brozovich FV. Unzipping the role of myosin light chain phosphatase in smooth muscle cell relaxation. J Biol Chem 2004;279:597-603. [41] Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature 2006;442:527-32. [42] Lin CC, Lin WN, Wang WJ, Sun CC, Tung WH, Wang HH, Yang CM. Functional coupling expression of COX-2 and cPLA2 induced by ATP in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-kappaB. Cardiovasc Res 2009;82:522-31. [43] Prosdocimo DA, Douglas DC, Romani AM, O'Neill WC, Dubyak GR. Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells. Am J Physiol Cell Physiol 2009;296:C828-39. [44] Wallentin L. P2Y(12) inhibitors: differences in properties and mechanisms of action and potential consequences for clinical use. Eur Heart J 2009;30:1964-77. [45] Liao Z, Seye CI, Weisman GA, Erb L. The P2Y2 nucleotide receptor requires interaction with αv integrins to access and activate G12. J Cell Sci 2007;120:1654-62. [46] Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004;113:340-5. [47] Bagchi S, Liao Z, Gonzalez FA, Chorna NE, Seye CI, Weisman GA, Erb L. The P2Y2 nucleotide receptor interacts with alphav integrins to activate Go and induce cell migration. J Biol Chem 2005;280:39050-7. [48] Erb L, Weisman GA. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 2012;1:789-803. [49] Thastrup O. Role of Ca2+-ATPases in regulation of cellular Ca2+ signaling, as studied with the selective microsomal Ca2+- ATPases inhibitor,thapsigargin. agents actions 1990;29:8-15. [50] Sagara Y, Fernandez-Belda F, de Meis L, Inesi G. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J Biol Chem 1992;267:12606-13. [51] Sagara Y, Wade JB, Inesi G. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem 1992;267:1286-92. [52] Treiman M CC, Christensen SB. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci 1998;19:131-5. [53] Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002;418:605-11. [54] Vostal JG, Shafer B. Thapsigargin-induced calcium influx in the absence of detectable tyrosine phosphorylation in human platelets. J Biol Chem 1996;271:19524-9. [55] Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 1991;266:17067-71. [56] Cuinas A, Garcia-Morales V, Vina D, Gil-Longo J, Campos-Toimil M. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016;155:102-9. [57] Winther AML, Liu HZ, Sonntag Y, Olesen C, le Maire M, Soehoel H, Olsen CE, Christensen SB, Nissen P, Moller JV. Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs. J Biol Chem 2010;285:28883-92. [58] Luna-Vazquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Rojas-Molina I, Zavala-Sanchez MA. Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013;18:5814-57. [59] Alvarez E, Toimil MC, Justiniano-Basaran H, Lugnier C, Orallo F. Study of the mechanisms involved in the vasorelaxation induced by (-)-epigallocatechin-3-gallate in rat aorta. Br J Pharmacol 2006;147:269-80. [60] Campos-Toimil M, Orallo F. Effects of (-)-epigallocatechin-3-gallate in Ca2+-permeable non-selective cation channels and voltage-operated Ca2+ channels in vascular smooth muscle cells. Life Sci 2007;80:2147-53. [61] Romano MR, Lograno MD. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: Involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. Eur J Pharmacol 2009;608:48-53. [62] Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin Pharmacol 2006;99:360-4. [63] Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Forstermann U. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002;106:1652-8. [64] Wang NS, Ko SH, Chai WD, Li GL, Barrett EJ, Tao LJ, Cao WH, Liu ZQ. Resveratrol recruits rat muscle microvasculature via a nitric oxide-dependent mechanism that is blocked by TNF α. Am J Physiol-Endoc M 2011;300:E195-E201. [65] Duarte J, Perezvizcaino F, Zarzuelo A, Jimenez J, Tamargo J. Vasodilator effects of quercetin in isolated rat vascular smooth-muscle. Eur J Pharmacol 1993;239:1-7. [66] Kuboto Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, Shinozuka K, Kunitomo M. Ginkgo biloba extract-induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci 2001;69:2327-36. [67] Li PG, Sun L, Han X, Ling S, Gan WT, Xu JW. Quercetin inducesrapid eNOS phosphorylation and vasodilation by an AKT-Independent and PKA-dependent mechanism. Pharmacology 2012;89:220-8. [68] Romero M, Jimenez R, Sanchez M, Lopez-Sepulveda R, Zarzuelo MJ, O'Valle F, Zarzuelo A, Perez-Vizcaino F, Duarte J. Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 2009;202:58-67. [69] Suri S, Liu XH, Rayment S, Hughes DA, Kroon PA, Needs PW, Taylor MA, Tribolo S, Wilson VG. Quercetin and its major metabolites selectively modulate cyclic GMP-dependent relaxations and associated tolerance in pig isolated coronary artery. Br J Pharmacol 2010;159:566-75. [70] Wang J, Xiong XJ. Current situation and perspectives of clinical study in integrative medicine in China. J Evid Based Complementary Altern Med 2012. [71] Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res 2013;36:570-9. [72] Jung MJ, Chung HY, Choi JH, Choi JS. Antioxidant principles from the needles of red pine, Pinus densiflora. Phytother Res 2003;17:1064-8. [73] Fitzpatrick DF, Hirschfield SL, Ricci T, Jantzen P, Coffey RG. Endothelium-dependent vasorelaxation caused by various plant-extracts. J Cardiovasc Pharm 1995;26:90-5. [74] Cheong HS, Lim DY. Pine needle extracts inhibit contractile responses of the isolated rat aortic strips. Nat Prod Sci 2010;16:123-32. [75] Choi MS, Seo YH, Cheong HS, Lim DY. Inhibitory effects of self-fermented pine needle extract on catecholamine release in the rat adrenal medulla. Nat Prod Sci 2013;19:36-48. CHAPTER 1 Identification and comparison of phenolic and aroma constituents in needles of two pine species and their endophyte-fermented liquor [1] Richardson DM, Rejmanek M. Trees and shrubs as invasive alien species - a global review. Divers Distrib 2011;17:788-809. [2] Khan I, Singh V, Chaudhary AK. Hepatoprotective activity of Pinus roxburghii Sarg. wood oil against carbon tetrachloride and ethanol induced hepatotoxicity. Bangladesh J Pharmacol 2012;7:94-99. [3] Pinelo M, Rubilar M, Sineiro J, et al. Extraction of antioxidant phenolics from almond hulls (Prunes amygdalus) and pine sawdust (Pines pinaster). Food Chem 2004;85:267-273. [4] Tanaka R, Tokuda H, Ezaki Y. Cancer chemopreventive activity of 'rosin' constituents of Pinus spez. and their derivatives in two-stage mouse skin carcinogenesis test. Phytomedicine 2008;15:985-992. [5] Velmurugan N, Han SS, Lee YS. Antifungal activity of neutralized wood vinegar with water extracts of Pinus densiflora and Quercus serrata saw dusts. Int. J Environ Res 2009;3:167-176. [6] Yen HF, Hsieh CT, Hsieh TJ, et al. In vitro anti-diabetic effect and chemical component analysis of 29 essential oils products. J Food Drug Anal 2015;23:124-129. [7] Liu GY, Wang ZW. Pinus morrisonicola Hayata extracts inhibit cell proliferation and promote apoptosis of human promyelocytic HL-60 leukemia cells. Eur J Cancer 2014;50:S44. [8] Liao CL, Chen CM, Chang YZ, et al. Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression. J Agric Food Chem 2014;62:10458-10467. [9] Yen GC, Duh PD, Huang DW, et al. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of NOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2008;46:175-185. [10] Kim KY, Chung HJ. Flavor compounds of pine sprout tea and pine needle tea. J Agric Food Chem 2000;48:1269-1272. [11] Lai CH, Hsieh CW, Ko WC. Detection limit of molasses spirits mixed in rice spirits using the SNIF-NMR method. J Food Drug Anal 2014;22:197-201. [12] Lee JS, Chang CY, Yu TH, et al. Studies on the quality and flavor of ponkan (Citrus poonensis hort.) wines fermented by different yeasts. J Food Drug Anal 2013;21:301-309. [13] Sun TY, Li JS, Chen C. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. J Food Drug Anal 2015;23:709-718. [14] Chen YH, Hsieh PC, Mau JL, et al. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. Lwt-Food Sci Technol 2011;44:1477-1481. [15] Park G, Paudyal DP, Hwang I, et al. Production of fermented needle extracts from red pine and their functional characterization. Biotechnol Bioprocess Eng 2008;13:256-261. [16] Brennan M, McLean JP, Klingberg A, et al. Pyrolysis gas-chromatography mass-spectrometry (Py-GC/MS) to identify compression wood in Pinus radiata saplings. Holzforschung 2014;68:505-517. [17] Dob T, Berramdane T, Chelgoum C. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria C R Chim 2005;8:1939-1945. [18] Koukos PK, Papadopoulou KI, Patiaka DT, et al. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce grisebach) grown in Northern Greece. J Agric Food Chem 2000;48:1266-1268. [19] Szmigielski R, Cieslak M, Rudzinski KJ, et al. Identification of volatiles from Pinus silvestris attractive for Monochamus galloprovincialis using a SPME-GC/MS platform. Environ Sci Pollut Res Int 2011;19:2860-2869. [20] Yang X, Zhao HT, Wang J, et al. Chemical composition and antioxidant activity of essential oil of pine cones of Pinus armandii from the Southwest region of China J Med Plants Res 2010;4:1668-1672. [21] Li SC, Chang CMJ, Deng TS. Enzymatic hot pressurized fluids extraction of polyphenolics from Pinus taiwanensis and Pinus morrisonicola. J Taiwan Inst Chem E 2009;40:136-142. [22] Molyneux RJ, Schieberle P. Compound identification: A journal of agricultural and food chemistry perspective. J Agric Food Chem 2007;55:4625-4629. [23] Chung TY, Kuo PC, Liao ZH, et al. Analysis of lipophilic compounds of tea coated on the surface of clay teapots. J Food Drug Anal 2015;23:71-81. [24] Chen YJ, Kuo PC, Yang ML, et al. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Res Int 2013;53:732-743. [25] Wallis C, Eyles A, Chorbadjian RA, et al. Differential effects of nutrient availability on the secondary metabolism of Austrian pine (Pinus nigra) phloem and resistance to Diplodia pinea. Forest Pathol 2011;41:52-58. [26] Karonen M, Hamalainen M, Nieminen R, et al. Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E-2. J Agric Food Chem 2004;52:7532-7540. [27] Parejo I, Jauregui O, Viladomat F, et al. Characterization of acylated flavonoid-O-glycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2004;18:2801-2810. [28] Karapandzova M, Stefkov G, Cvetkovikj I, et al. Flavonoids and other phenolic compounds in needles of Pinus peuce and other pine species from the Macedonian Flora Nat Prod Commun 2015;10:987-990. [29] Lo YH, Chen YJ, Chang CI, et al. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-Shin Oolong tea, are putative oral agonists of the ghrelin receptor. J Agric Food Chem 2014;62:5085-5091. [30] Hsieh SK, Lo YH, Wu CC, et al. Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. J Food Drug Anal 2015;23:660-670. [31] Biesaga M, Pyrzynska K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J Chromatogr A 2009;1216:6620-6626. [32] Behrendt U, Schumann P, Ulrich A. Agrococcus versicolor sp. nov., an actinobacterium associated with the phyllosphere of potato plants. Int J Syst Evol Microbiol 2008;58:2833-2838. [33] Dvorakova M, Douanier M, Jurkova M, et al. Comparison of antioxidant activity of barley (Hordeum vulgare L.) and malt extracts with the content of free phenolic compounds measured by high performance liquid chromatography coupled with CoulArray detector. J Inst Brewing 2008;114:150-159. [34] Clavel T, Dore J, Blaut M. Bioavailability of lignans in human subjects. Nutr Res Rev 2006;19:187-196. [35] Gerstenmeyer E, Reimer S, Berghofer E, et al. Effect of thermal heating on some lignans in flax seeds, sesame seeds and rye. Food Chem 2013;138:1847-1855. [36] Ismail Amri MH, Bassem J, Lamia H. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential. Arab J Chem 2014;6. DOI: 10.1016/j.arabjc.2014.05.026 [37] Kannaste A, Copolovici L, Pazouki L, et al. Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris) populations. Tree Physiol 2013;33:374-387. [38] Nikolic B, Ristic M, Bojovic S, et al. Population variability of essential oils of Pinus heldreichii from the Scardo-Pindic mountains Osljak and Galicica. Chem Biodivers 2015;12:295-308. [39] Ninomiya K, Hayama K, Ishijima SA, et al. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro. Biol Pharm Bull 2013;36:838-844. [40] Ninomiya K, Maruyama N, Inoue S, et al. The essential oil of Melaleuca alternifolia (Tea Tree Oil) and its main component, terpinen-4-ol protect mice from experimental oral candidiasis. Biol Pharm Bull 2012;35:861-865. [41] Yoshizawa K. The formation of higher alcohols in the fermentation of amino acids by yeast. Agric Biol Chem 1965;29:672-677. [42] Swiegers JH, Bartowsky EJ, Henschke PA, et al. Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine R 2005;11:139-173. [43] Adeboye PT, Bettiga M, Aldaeus F, et al. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb Cell Fact 2015;14. DOI:10.1186/s12934-015-0338-x [44] Suomalainen H, Lehtonen M. The production of aroma compounds by yeast. J. Inst Brewing 1979;85:149-156. [45] Steyer D, Ambroset C, Brion C, et al. QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics 2012;15. DOI: 10.1186/1471-2164-13-573 [46] Ziment I. History of the treatment of chronic bronchitis. Respiration 1991;58:37-42. [47] Cho ST, inventor; Hospira, Inc., assignee. Microneedles for minimally invasive drug delivery. United States patent US 6,980,855. 2005 Dec 27. [48] Quirantes-Pine R, Funes L, Micol V, et al. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract. J Chromatogr A 2009;1216:5391-5397. [49] Benayad Z, Gomez-Cordoves C, Es-Safi NE. Characterization of flavonoid glycosides from Fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int J Mol Sci 2014;15:20668-20685. [50] Li B, Shen YH, He YR, Zhang WD Chemical constituents and biological activities of Pinus species. Chem Biodivers 2013;10:2133-2160. [51] Sanchez-Rabaneda F, Jauregui O, Lamuela-Raventos RM, et al. Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Commun Mass Spectrom 2004;18:553-563. [52] Slimestad R. Flavonoids in buds and young needles of Picea, Pinus and Abies. Biochem Syst Ecol 2003;31:1247-1255. [53] Sanz M, de Simon BF, Cadahia E, et al. LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. J Mass Spectrom 2012;47:905-918. [54] Morreel K, Ralph J, Lu FC, et al. Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 2004;136:4023-4036. [55] Wang SP, Zhang JZ, Zhang ZD, et al. Identification of chemical constituents in the extract and rat serum from Ziziphus jujuba Mill. by HPLC-PDA-ESI-MS. Iran J Pharm Res 2014;13:1055-1063. [56] Falcao SI, Vale N, Gomes P, et al. Phenolic profiling of portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem Anal 2013;24:309-318. CHAPTER 2 Isolation of neolignans and acylated flavonoid glucoside from the needle of Pinus morrisonicola Hayata and the inhibition of cytoplasmic Ca2+ concentrate in A7r5 vascular smooth muscle cell [1] Murray CJ, Vos T, Lozano R, Naghavi M, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2197-223. [2] Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005;365:217-23. [3] Triggle DJ. Calcium channel antagonists: clinical uses-past, present and future. Biochem Pharmacol 2007;74:1-9. [4] Morgan TO, Anderson AI, MacInnis RJ. ACE inhibitors, beta-blockers, calcium blockers, and diuretics for the control of systolic hypertension. Am J Hypertens 2001;14:241-7. [5] Zamponi GW, Striessnig J, Koschak A, et al. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015;67:821-70. [6] Catterall WA, Swanson TM. Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol 2015;88:141-50. [7] Grimaldi-Bensouda L, Klungel O, Kurz X, et al. Calcium channel blockers and cancer: a risk analysis using the UK Clinical Practice Research Datalink (CPRD). Bmj Open 2016;6. [8] Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertens (Greenwich) 2014;16:14-26. [9] Moutzouri E, Florentin M, Elisaf MS, et al. Aliskiren, a direct renin inhibitor, in clinical practice: a new approach in the treatment of hypertension. Curr Vasc Pharmacol 2010;8:344-62. [10] Sarafidis PA, Bakris GL. Resistant hypertension: an overview of evaluation and treatment. J Am Coll Cardiol 2008;52:1749-57. [11] Chen YH, Hsieh PC, Mau JL, et al. Antioxidant properties and mutagenicity of Pinus morrisonicola and its vinegar preparation. Lwt-Food Sci Technol 2011;44:1477-81. [12] Kim KY, Chung HJ. Flavor compounds of pine sprout tea and pine needle tea. J Agr Food Chem 2000;48:1269-72. [13] Liu GY, Wang ZW. Pinus morrisonicola Hayata extracts inhibit cell proliferation and promote apoptosis of human promyelocytic HL-60 leukemia cells. Eur J Cancer 2014;50:S44. [14] Yen GC, Duh PD, Huang DW, et al. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of NOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2008;46:175-85. [15] Cuinas A, Garcia-Morales V, Vina D, et al. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016;155:102-9. [16] Lin NH, Chung TY, Li FY, et al. Enhancing the potency of lithospermate B for inhibiting Na+/K+-ATPase activity by forming transition metal ion complexes. Acta Pharmacol Sin 2013;34:893-900. [17] Vicencio JM, Ibarra C, Estrada M, et al. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes. Endocrinology 2006;147:1386-95. [18] Jayaprakasha GK, Ohnishi-Kameyama M, Ono H, et al. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J Agric Food Chem 2006;54:1672-9. [19] Nakanishi T, Iida N, Inatomi Y, et al. Neolignan and flavonoid glycosides in Juniperus communis var. depressa. Phytochemistry 2004;65:207-13. [20] Emeline H, Flore N, Valérie J, et al. Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. Ex DC (syn. P.persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians. J Ethnopharmacol 2016;187:241-8. [21] Balungile M, Mutalib AA, Johannes VS, Isolation and characterization of antimicrobial constituents of Searsia chirindensis L. (Anacardiaceae) leaf extracts. J Ethnopharmacol 2013;150:609-13. [22] Karapandzova M, Stefkov G, Cvetkovikj I, et al. Flavonoids and other phenolic compounds in needles of Pinus peuce and other pine species from the Macedonian Flora. Nat Prod Commun 2015;10:987-90. [23] Luna-Vazquez FJ, Ibarra-Alvarado C, Rojas-Molina A, et al. Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013;18:5814-57. [24] Nishioka K, Hidaka T, Nakamura S, et al. Pycnogenol, French maritime pine bark extract, augments endothelium-dependent vasodilation in humans. Hypertens Res 2007;30:775-80. [25] Liu XM, Wei JP, Tan FS, et al. Antidiabetic effect of Pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci 2004;75:2505-13. [26] Rohdewald P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther 2002;40:158-68. [27] Schafer A, Chovanova Z, Muchova J, et al. Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol). Biomed Pharmacother 2006;60:5-9. [28] Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81:243S-55S. [29] Fitzpatrick DF, Bing B, Rohdewald P. Endothelium-dependent vascular effects of Pycnogenol. J Cardiovasc Pharm 1998;32:509-15. [30] Ying CJ, Xu JW, Ikeda K, et al. Tea polyphenols regulate nicotinamide adenine dinucleotide phosphate oxidase subunit expression and ameliorate angiotensin II-induced hyperpermeability in endothelial cells. Hypertens Res 2003;26:823-8. [31] Ferreira-Junior JC, Conserva LM, Lyra Lemos RP, et al. Isolation of a dihydrobenzofuran lignan, icariside E4, with an antinociceptive effect from Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae) bark. Arch Pharm Res 2015;38:950-6. [32] Kwon JH, Kim JH, Choi SE, et al. Inhibitory effects of phenolic compounds from needles of Pinus densiflora on nitric oxide and PGE2 production. Arch Pharm Res 2010;33:2011-6. [33] Min-Jeong SEO B-WKaY-KJ. Identification of a Neolignan glycoside from the pine tree, Pinus densiflora showed antithrombotic activity. J. Life Sci 2014;24:873-9. [34] Lo YH, Chen YJ, Chang CI, et al. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. J Agric Food Chem 2014;62:5085-91. [35] Campos-Toimil M, Elies J, Orallo F. Trans- and cis-resveratrol increase cytoplasmic calcium levels in A7r5 vascular smooth muscle cells. Mol Nutr Food Res 2005;49:396-404. [36] Cuinas A, Garcia-Morales V, Vina D, et al. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016;155:102-9. [37] Lo YH, Chen YJ, Chang CI, et al. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. J Agric Food Chem 2014;62:5085-91. [38] Campos-Toimil M, Elies J, Orallo F. Trans- and cis-resveratrol increase cytoplasmic calcium levels in A7r5 vascular smooth muscle cells. Mol Nutr Food Res 2005;49:396-404. [39] Cuinas A, Garcia-Morales V, Vina D, et al. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016;155:102-9.
摘要: 
松為松科植物的總稱,屬於常綠喬木,少部分為矮小灌木,葉部常成針狀。松樹的藥用功效不管在東方或是西方典籍中皆早有記載。台灣地區也分布了許多不同種類的松樹,其中台灣五葉松(Pinus morrisonicola Hayata)以及台灣二葉松(Pinus taiwanensis Hayata)廣泛分布於台灣山區並且皆屬於台灣特有種。台灣五葉松及台灣二葉松長久以來被民間作為保健食品,傳統使用上常直接將松葉製成松葉茶或是額外加入砂糖製成松發酵液或是松醋。本論文研究主題第一部分主要目的在研究台灣五葉松及台灣二葉松以及其內生菌發酵液的化學二次代謝物成分,期望對這兩種台灣特有種的二次代謝物背景以及其經過長時間發酵後的化學變化有所了解,以利未來對於發酵物活性功效的開發。第二部分主要研究台灣五葉松松針萃取物對於降血壓效果的開發,並鑑定具有降血壓活性的二次代謝物。

在第一部分研究中,我們利用液相層析質譜儀從兩種松葉中鑑定出了27種多酚類化合物,主要由兒茶素類、原花青素類、黃酮類、木質素所構成,某些結構上還接有不同糖基化或酚酸醯化修飾;而透過氣相層析質譜儀中,我們發現了60種揮發性成分,主要包含有機酸、酯類、萜類、醯胺類及醇類化合物。在經過長時間的內生菌發酵轉換後,主要多酚類化合物下降為12種,包含黃酮類糖苷及木質素糖苷;而揮發性成分部分也下降為29種,主要是有機酸類及醇類化合物,並生成出萜二醇 (terpin) 此一具有緩解咳嗽效果的活性成分。透過對於其二次代謝物的了解,未來能夠對於發酵液在發酵過程中有所調控,有利於其未來活性的開發。

在第二部分研究中,由於長久以來台灣五葉松松葉常應用於緩解高血壓所產生的症狀,因此利用大鼠主動脈平滑肌細胞株(A7r5)的鈣離子螢光平台,來觀察松葉萃取物對於細胞內鈣離子濃度的影響。透過螢光實驗、質譜及NMR發現到五葉松中的icariside E4,(7'R, 8'S)-7'-(3',4'-dimethoxyphenyl)-3-hydroxy-8'-hydroxymethyl- 7',8'-dihydrobenzofuran-1-propanol 9'-O-α-L-arabinofuranoside及kaempferol coumaroyl-glucose-rhamnoside具有抑制電位控制鈣離子通道的開啟,來抑制鈣離子進入血管平滑肌細胞中。這些多酚類化合物具有潛力成為新一代的鈣離子通道抑制劑,用於治療高血壓的症狀。

Pine plant belongs to the genus Pinus. It is an evergreen ligneous plant with many pharmacological effects. In Taiwan, P. morrisonicola Hayata and P. taiwanensis Hayata are endemic species and widely distributed around mountain area. Both of their needles and branches served as functional food for local people for decades and the traditional way to prepared them are directly extract with hot water or fermented with sugar through long period process to produce alcoholic drinks or vinegar. This thesis consists of two parts: I. Identification and comparison of phenolic and aromatic constituents in needles of two pine species and their endophyte-fermented liquor. II. Isolation of neolignans and acylated flavonoid glucoside from the needle of P. morrisonicola Hayata and the inhibition of cytoplasmic Ca2+ concentrate in A7r5 vascular smooth muscle cell.

In the first part, there are 27 phenolic and 60 aromatic compounds were identified in the fresh young needles. The phenolic compounds were mainly composed of catechins, procyandins, flavonoids, and lignans attached with glycoside or acylated glycoside. Organic acids, esters, terpenes, amides, and alcohols were the major aromatic compounds. In contrast, 12 phenolic and 29 aromatic compounds were identified in the endophyte-fermented liquor and found to be drastic different from those compounds in the original young needles; the main phenolic compounds were aglycones of flavonoids and lignin while the major aromatic compounds were organic acids and alcohols. High content of terpin were also discovered in the endophyte-fermented liquor.

In the second part, two dihydrobenzofuran lignan, icariside E4 and (7'R, 8'S)-7'-(3',4'-dimethoxyphenyl)-3-hydroxy-8'-hydroxymethyl- 7',8'-dihydrobenzofuran-1-propanol 9'-O-α-L-arabinofuranoside and one acylated flavonoid glucoside, Kaempferol coumaroyl-glucose-rhamnoside were isolated and identified from the needle of P. morrisonicola Hayata. All of the compounds inhibit cytosolic calcium increase (calcium fluorescent) through blocking the voltage-operated calcium channel (VOCC) in A7r5 cell (a Rattus norvegicus aorta smooth muscle cell). These compounds could be promising candidates for further application as a VOCC inhibitor for the new treatment of hypertension.
URI: http://hdl.handle.net/11455/96367
Rights: 同意授權瀏覽/列印電子全文服務,2020-08-25起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7099041026-1.pdf6.04 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.