Please use this identifier to cite or link to this item:
標題: 運用突變的pheS基因做為反向篩選標記進行馬紅球菌基因體中kstD基因的剔除
Using mutant pheS gene as the counter-selection marker to delete the kstD genes in Rhodococcus equi
作者: 郭子瑋
Tzu-wei Kuo
關鍵字: 反向篩選標記;馬紅球菌;counter-selection marker:Rhodococcus equi;pheS;kstD
引用: Ali Shah, S. A., Sultan, S., & Adnan, H. S. (2013). A Whole-cell Biocatalysis Application of Steroidal Drugs. Oriental Journal Of Chemistry, 29(2), 389-403. doi:10.13005/ojc/290201 Arnold, A. P., & Breedlove, S. M. (1985). Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Hormones and behavior, 19(4), 469-498. Bader, M. (2008). Cardiovascular Hormone Systems: From Molecular Mechanisms to Novel Therapeutics: John Wiley & Sons. Barel-Cohen, K., Shore, L. S., Shemesh, M., Wenzel, A., Mueller, J., & Kronfeld-Schor, N. (2006). Monitoring of natural and synthetic hormones in a polluted river. Journal of environmental management, 78(1), 16-23. Bloch, K. (1965). The biological synthesis of cholesterol: Nobel Foundation. Capyk, J. K., Kalscheuer, R., Stewart, G. R., Liu, J., Kwon, H., Zhao, R., . . . Mohn, W. W. (2009). Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of c27 steroids. J Biol Chem, 284(51), 35534-35542. doi:10.1074/jbc.UV109.072132 Colquhoun, J. A., Mexson, J., Goodfellow, M., Ward, A. C., Horikoshi, K., & Bull, A. T. (1998). Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek, 74(1-3), 27-40. Cornforth, J. W. (2002). Sterol biosynthesis: the early days. Biochem Biophys Res Commun, 292(5), 1129-1138. doi:10.1006/bbrc.2001.2006 de las Heras, L. F., van der Geize, R., Drzyzga, O., Perera, J., & Llorens, J. M. N. (2012). Molecular characterization of three 3-ketosteroid-Δ 1-dehydrogenase isoenzymes of μ ruber strain Chol-4. The Journal of steroid biochemistry and molecular biology, 132(3), 271-281. Dewick, P. M. (1999). Pharmaceutical steroids and their production for hormone replacement therapy. British Menopause Society Journal, 5(1), 12-22. Dias, M., Bhat, P., Chandrakar, S., & Pinto, H. (2013). Rhodococcus equi: a pathogen in immunocompetent patients. J Family Med Prim Care, 2(3), 291-293. doi:10.4103/2249-4863.120770 Donova, M. V., & Egorova, O. V. (2012). Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol, 94(6), 1423-1447. doi:10.1007/s00253-012-4078-0 Fernandes, P., Cruz, A., Angelova, B., Pinheiro, H. M., & Cabral, J. M. S. (2003). Microbial conversion of steroid compounds: recent developments. Enzyme and Microbial Technology, 32(6), 688-705. doi:10.1016/s0141-0229(03)00029-2 Ferreira, N., & Tracey, R. (1984). Numerical taxonomy of cholesterol‐degrading soil bacteria. Journal of applied bacteriology, 57(3), 429-446. Gao, P., Pinkston, K. L., Nallapareddy, S. R., van Hoof, A., Murray, B. E., & Harvey, B. R. (2010). Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. Journal of bacteriology, 192(20), 5489-5498. Garcia, J. L., Uhia, I., & Galan, B. (2012). Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol, 5(6), 679-699. doi:10.1111/j.1751-7915.2012.00331.x Gracia, T., Jones, P. D., Higley, E. B., Hilscherova, K., Newsted, J. L., Murphy, M. B., . . . Lam, P. K. (2008). Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. Environmental Science and Pollution Research, 15(4), 332-343. Guevara, G., de las Heras, L. F., Perera, J., & Llorens, J. M. N. (2017). Functional differentiation of 3-ketosteroid Δ 1-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Fact, 16(1), 42. Hamilton, D. L., & Abremski, K. (1984). Site-specific recombination by the bacteriophage P1 lox-Cre system: Cre-mediated synapsis of two lox sites. Journal of molecular biology, 178(2), 481-486. Herring, C. D., Glasner, J. D., & Blattner, F. R. (2003). Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 311, 153-163. doi:10.1016/s0378-1119(03)00585-7 Jäger, W., Schäfer, A., Pühler, A., Labes, G., & Wohlleben, W. (1992). Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. Journal of bacteriology, 174(16), 5462-5465. Kast, P., & Hennecke, H. (1991). Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. Journal of molecular biology, 222(1), 99-124. Kristich, C. J., Chandler, J. R., & Dunny, G. M. (2007). Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid, 57(2), 131-144. Lee, D. J., Bingle, L. E., Heurlier, K., Pallen, M. J., Penn, C. W., Busby, S. J., & Hobman, J. L. (2009). Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol, 9, 252. doi:10.1186/1471-2180-9-252 Letek, M., Gonzalez, P., Macarthur, I., Rodriguez, H., Freeman, T. C., Valero-Rello, A., . . . Vazquez-Boland, J. A. (2010). The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet, 6(9), e1001145. doi:10.1371/journal.pgen.1001145 Liu, Y., Shen, Y., Qiao, Y., Su, L., Li, C., & Wang, M. (2016). The effect of 3-ketosteroid-Delta(1)-dehydrogenase isoenzymes on the transformation of AD to 9alpha-OH-AD by Rhodococcus rhodochrous DSM43269. J Ind Microbiol Biotechnol, 43(9), 1303-1311. doi:10.1007/s10295-016-1804-0 Malaviya, A., & Gomes, J. (2008). Androstenedione production by biotransformation of phytosterols. Bioresource technology, 99(15), 6725-6737. Miyazaki, K. (2015). Benchmarks. BioTechniques, 58, 86-88. Mohn, W. W., Wilbrink, M. H., Casabon, I., Stewart, G. R., Liu, J., van der Geize, R., & Eltis, L. D. (2012). Gene cluster encoding cholate catabolism in Rhodococcus spp. Journal of bacteriology, 194(24), 6712-6719. Mottram, D. R., & George, A. J. (2000). Anabolic steroids. Best practice & research clinical endocrinology & metabolism, 14(1), 55-69. Muscatello, G., Leadon, D. P., Klay, M., Ocampo-Sosa, A., Lewis, D. A., Fogarty, U., . . . Vazquez-Boland, J. A. (2007). Rhodococcus equi infection in foals: the science of 'rattles'. Equine Veterinary Journal, 39(5), 470-478. doi:10.2746/042516407x209217 Petrusma, M., Hessels, G., Dijkhuizen, L., & van der Geize, R. (2011). Multiplicity of 3-Ketosteroid-9alpha-Hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol, 193(15), 3931-3940. doi:10.1128/JB.00274-11 Petrusma, M., Hessels, G., Dijkhuizen, L., & van der Geize, R. (2011). Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. Journal of bacteriology, 193(15), 3931-3940. Prescott, J. F. (1991). Rhodococcus equi: an animal and human pathogen. Clinical microbiology reviews, 4(1), 20-34. Riggs, B. L., Khosla, S., & Melton III, L. J. (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocrine reviews, 23(3), 279-302. Rohman, A., van Oosterwijk, N., Thunnissen, A. M., & Dijkstra, B. W. (2013). Crystal structure and site-directed mutagenesis of 3-ketosteroid Delta1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem, 288(49), 35559-35568. doi:10.1074/jbc.UV113.522771 Rosłoniec, K. Z., Wilbrink, M. H., Capyk, J. K., Mohn, W. W., Ostendorf, M., Van Der Geize, R., . . . Eltis, L. D. (2009). Cytochrome P450 125 (CYP125) catalyses C26‐hydroxylation to initiate sterol side‐chain degradation in Rhodococcus jostii RHA1. Molecular microbiology, 74(5), 1031-1043. Slaytor, M., & Bloch, K. (1965). Metabolic transformations of cholestenediols. Journal of Biological Chemistry, 240(12), 4598-4602. Van der Geize, R., De Jong, W., Hessels, G., Grommen, A., Jacobs, A., & Dijkhuizen, L. (2008). A novel method to generate unmarked gene deletions in the intracellular pathogen Rhodococcus equi using 5-fluorocytosine conditional lethality. Nucleic acids research, 36(22), e151-e151. van der Geize, R., Hessels, G. I., van Gerwen, R., van der Meijden, P., & Dijkhuizen, L. (2001). Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS microbiology letters, 205(2), 197-202. Veiga, P., Juste, C., Lepercq, P., Saunier, K., Béguet, F., & Gérard, P. (2005). Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut. FEMS microbiology letters, 242(1), 81-86. Vishniac, W., & Santer, M. (1957). The thiobacilli. Bacteriological reviews, 21(3), 195. Yeh, C.-H., Kuo, Y.-S., Chang, C.-M., Liu, W.-H., Sheu, M.-L., & Meng, M. (2014). Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23, 24-bisnorchola-1, 4-dien-22-oic acid and 1, 4-androstadiene-3, 17-dione. Microb Cell Fact, 13(1), 130. Zhang, J. (2002). Rhodococcus maanshanensis sp. nov., a novel actinomycete from soil. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2121-2126. doi:10.1099/ijs.0.02253-0 Zhang, Q., Ren, Y., He, J., Cheng, S., Yuan, J., Ge, F., . . . Xie, G. (2015). Multiplicity of 3-ketosteroid Δ1-dehydrogenase enzymes in Gordonia neofelifaecis NRRL B-59395 with preferences for different steroids. Annals of Microbiology, 65(4), 1961-1971. doi:10.1007/s13213-015-1034-0 羅昱文. (2015). Construction of potential unmarked gene deletion mutagenesis systems and selection of regulable promoters used in Rhodococcus equi. 郭永順. (2014). Study on androstadienedione production from steroid by Rhodococcus sp. mutant strains.
4-雄烯二酮 (4-Androstene-3,17-dione, AD)在固醇藥物 工業的製程上 是一個重 要的前驅物,能經由一系列化學合成來形不同這類廣泛應用於醫藥產業,例如消炎、避孕等。在自然界中部分微生物具有降解固醇的能力,而 4-雄烯二酮為降解路徑之中間物,因此以微生來產 4-雄烯二 酮具有相當高的潛力。本實驗研究主角馬紅球菌 (Rhodococcus equi)屬於 革蘭 氏陽性菌 。3-ketosteroid Δ1-dehydrogenase (kstD)在固醇代謝的路徑上扮演 在固醇代謝的路徑上扮演 , 將 4-雄烯二酮催化成 1,4-雄二烯酮 (1,4-Androstadiene-3,17-dione , ADD) 的角 色。根據基因組資訊預測馬紅球菌存在著五個不同的 kstD基因,編碼分別 是 Req_06770、Req_10320、Req_13080、Req_15820、Req_30200。目前對於這 。目前對於這 些基因在固醇代謝路徑中的角色仍缺實驗證明 。因此本實驗先建立一套適合馬 紅球菌的非標記性基因剔除方法,逐一 在實驗室的 馬紅球菌 UV1(R. equi UV1)菌株上 進行個別 kstD基因剔除。目前已篩選到四株菌, 基因標號 分別是 Req_10320、Req_13080、Req_15820與 Req_06770。之後 針對基因剔除菌株, 再以薄層分析 (Thin layer chromatography)觀察 4-雄烯二酮累積情況。結果發現 這四株 kstD剔除菌株皆未能在培養基中累積 4-雄烯二酮。我們推測主要負責 4-雄烯二酮催化的基因尚未被成功剔除,抑或是這五個 KSTD蛋白皆具有轉換 4-雄烯二酮成 1,4-雄二烯酮的功能,導致被代謝而無法順利累積。 我們將於馬紅球菌中持續剔除 Req_30200或於同一株菌中累積多個剔除基因, 或於同一株菌中累積多個剔除基因, 以得到能累積 4-雄烯二酮的菌株。

4-Androstene-3,17-dione (AD), an important precursor in steroids industry, can be transformed into a variety of steroids via a series of chemical synthesis. These steroids have been widely used as anti-inflammatory drugs, immunosuppressant, and contraceptives etc. In nature, some microorganisms are able to degrade sterol; therefore, utilization of these microorganisms to accumulate AD is considerably potential. Rhodococcus equi, a gram-positive bacterium, use the 3-ketosteroid Δ1-dehydrogenase (kstD) to converse AD into 1,4-androstadiene-3,17-dione (ADD) in steroid metabolism. According to the genomic information of R. equi, there are probably five kstD paralogs, which include Req_06770, Req_10320, Req_13080, Req_15820, and Req_30200, in R. equi. Nonetheless, the role of these genes in the sterol pathway is still unclear. In this study, an unmarked gene knockout method applicable to R. equi was established to delete the putative kstD genes and the resulting effects on AD accumulation in the culture medium were assayed by thin layer chromatography (TLC). So far Req_10320, Req_13080, and Req_15820、Req_06770 have been deleted respectively. Unfortunately, none of the four kstD-deleted strains could accumulate AD. We presume either the major gene responsible for AD to ADD conversion has not been deleted or all the KSTD proteins are involved in AD catabolism so that single kstD deletion cannot result in AD accumulation. In the future, we will continue to delete Req_30200 and create mutant strains with multiple kstD gene deletions in order to obtain the ideal strain for AD production.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7103041028-1.pdf4.21 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.