Please use this identifier to cite or link to this item:
標題: 阿拉伯芥中一ANTHER DEHISCENCE REPRESSOR基因於過氧化體中抑制茉莉酸合成及次級細胞壁增厚以調控花藥開裂
The Gene ANTHER DEHISCENCE REPRESSOR Controls Anther Dehiscence by Suppressing the Jasmonate Biosynthetic Pathway and Anther Cell Wall Thickening in the Peroxisomes of Arabidopsis
作者: 戴書瑜
Shu-Yu Dai
關鍵字: 花藥開裂;過氧化體;茉莉酸;過氧化氫;次級細胞壁;anther dehiscence;peroxisome;jasmonic acid;H2O2;sencondary wall
引用: 戴書瑜 (2010) 受文心蘭OMADS1政調控的未知基因之功能性分析. 國立中興大學生物科技學研究所. 碩士論文 Dai SY (2010) Characterization and Functional Analysis of a Novel Gene Up-regulated by OMADS1 of Oncidium. National Chung Hsing University Graduate Institute of Biotechnology Master Thesis Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103: 1133–1137 Bentham M, Mazaleyrat S, Harris M (2006) Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein. J Gen Virol 87: 563-571 Bhatnagar, RS, Futterer, K., Waksman, G., and Gordon, JI (1999) . The structure of myristoyl-CoA:protein N-myristoyltransferase. Biochim Biophys Acta 1441, 162-172. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47: 851–863 Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519–546 Boisson, B., and Meinnel, T. (2003) . A continuous assay of myristoyl-CoA:protein N-myristoyltransferase for proteomic analysis. Anal Biochem 322, 116-123. Bonner L, Dickinson H (1989) Anther dehiscence in Lycopersicon esculentum Mill. I. Structural aspects. New Phytol 113: 97–115 Boutin, JA (1997) . Myristoylation. Cell Signal 9, 15-35. Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70: 13-14 Cecchetti V, Altamura MM, Brunetti P, Petrocelli V, Falasca G, Ljung K, Costantino P, Cardarelli M (2013) Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J 74: 411–422 Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152: 837–853 Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH. (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant Journal 68: 168–185 Dat J, Vandenabeele S, Vranova E, van Montagu M, Inze D, van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57: 779–795 Dempsey DA, Klessig DF (1995) Signals in plant disease resistance. Bull. Inst. Pasteur 93: 167–186 Eklund DM, Staldal V, Valsecchi I. (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22: 349–363. Goldberg, R.B., Beals, T.P., and Sanders, P.M. (1993) . Anther development: basic principles and practical applications. Plant Cell 5, 1217-1229. Goto-Yamada S, Mano S, Nishimura M (2014) The Role of Peroxisomes in Plant Reproductive Processes. In: Sawada H., Inoue N., Iwano M. (eds) Sexual Reproduction in Animals and Plants. Springer, Tokyo Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J. (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22: 1161–1173. Herth W, Schnepf E (1980) The fluorochrome calcofluor white binds oriented to structural polysacharide fibrils. Protoplasma 105: 129–133 Hofgen, R., and Willmitzer, L. (1988) . Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16, 9877. Hsu HF, Yang CH (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43: 1198–1209. Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: Biogenesis and function. Plant Cell 24: 2279–2303 Huang H, Liu B, Liu L, Song S (2017) Jasmonate action in plant growth and development. J Exp Bot 68: 1349–1359 Hung KT, Hsu YT, Kao CH (2006) Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol Plant 127: 293–303 Ikeda M, Mitsuda N, Ohme-Takagi M. (2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21: 3493–3505 Ishiguro, S, Kawai-Oda, A, Ueda, J, Nishida, I, and Okada, K. (2001) . The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209. Ju Y, Guo L, Cai Q, Ma F, Zhu QY, Zhang Q, Sodmergen S (2016) Arabidopsis JINGUBANG is a negative regulator of pollen germination that prevents pollination in moist environments. Plant Cell 28: 2131–2146 Jung KW, Kim YY, Yoo KS, Ok SH, Cui MH, Jeong BC, Yoo SD, Jeung JU, Shin JS (2013) A Cystathionine-β-Synthase Domain-Containing Protein, CBSX2, Regulates Endothecial Secondary Cell Wall Thickening in Anther Development. Plant Cell Physiol 54: 195-208 Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103: 230–235 Kimura M, Yoshizumi T, Manabe K, Yamamoto YY, Matsui M (2001) Arabidopsis transcriptional regulation by light stress via hydrogen peroxide-dependent and -independent pathways. Genes Cells 6: 607-617 Koo SC, Bracko O, Park MS (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS box gene AGAMOUS-LIKE6. Plant Journal 62: 807–816. Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J 15: 675–684 Li XR, Li HJ, Yuan L, Liu M, Shi DQ, Liu J, Yang WC (2014) Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. Plant Cell 26: 619–635 Linke, B., Nothnagel, T., and Borner, T. (2003) . Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34, 27-37. Liu Y, Huang W, Zhan J, Pan Q (2005) Systemic induction of H2O2 in pea seedlings pretreated by wounding and exogenous jasmonic acid. Sci China Ser C Life Sci 48: 202–212 Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56: 393-434 McConn M and Browse J (1996) The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. Plant Cell 8: 403-416 Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: 2993-3006 Mussig C, Biesgen C, Lisso J, Uwer U, Weiler EW, Altmann T (2000) A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid action and jasmonic acid synthesis. J Plant Physiol 157: 143–152. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132: 4107–4118. Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal 31: 1-12 Pauw B, Memelink J (2005) Jasmonate-responsive gene expression. J Plant Growth Regul 23: 200–210 Peng YJ, Shih CF, Yang JY, Tan CM, Hsu WH, Huang YP, Liao PC, Yang CH (2013) A RING-Type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis. Plant J 74: 310-327 Pesquet E, Ranocha P, Legay S, Digonnet C, Barbier O, Pichon M, Goffner D (2005) Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiol 139: 1821-1839 Pierre, M., Traverso, J.A., Boisson, B., Domenichini, S., Bouchez, D., Giglione, C., and Meinnel, T. (2007) . N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19, 2804-2821. Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network. Journal of Integrative Plant Biol 50: 2-18 Ralph J, Lundquist K, Brunow G, Lu FC, Kim H, Paul FS, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3: 29–60 Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11: 297–322 Sanders PM, Lee PY, Biesgen C., Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041–1061 Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T (2001) Monitoring of methyl jasmonate-responsive genes in Arabidogsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8: 153–161 Schaller, A., and Stintzi, A. (2009) . Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry 70, 1532-1538. Schilmiller AL, Koo AJK, Howe GA (2007) Functional Diversification of Acyl-Coenzyme A Oxidases in Jasmonic Acid Biosynthesis and Action. Plant Physiol. 143: 812-824. Scott, R.J., Spielman, M., and Dickinson, HG (2004) . Stamen structure and function. Plant Cell 16, S46-S60. Seo HS, Song JT, Cheong JJ, Lee, YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98: 4788–4793 Shih CF, Hsu WH, Peng YJ, Yang CH (2014) The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in jasmonate biosynthesis pathway in Arabidopsis. J Exp Bot 65: 621-639 Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51: 895–911 Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97: 10625-10630 Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J. (2010) Loss of function of the HSFA9 seed longevity program. Plant, Cell and Environment 33: 1127–1135 Turner SR, Taylor N, Jones L (2001) Mutations of the secondary cell wall. Plant Mol. Biol. 47: 209–219 Turner JG., Ellis C, and Devoto A. (2002) . The jasmonate signal pathway. Plant Cell 14 Suppl, S153-164. Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42: 1156–1168 Villarreal F, Martin V, Colaneri A, Gonzalez-Schain N, Perales M, Martin M, Lombardo C, Braun HP, Bartoli C, Zabaleta E (2009) Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. Plant Mol Biol 70: 471-485 Wang R, Brattain MG. (2014) The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett. 581: 3164-3170 Wasternack, C., and Kombrink, E. (2010) . Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5, 63-77. Wilson ZA, Song J, Taylor B, Yang C (2011) The final split: The regulation of anther dehiscence. J Exp Bot 62: 1633–1649 Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor M, Asensi-Fabado MA, Munne´-Bosch S, Antonio C, Tohge T (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24: 482–506 Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol. 45: 1586–1594. Yang C., Xu Z., Song J., Conner K., Vizcay Barrena G, and Wilson ZA (2007) . Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19, 534-548. Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53: 183–202 Yoo KS, Ok SH, Jeong BC, Jung KW, Cui MH, Hyoung SJ, Lee MR, Song HK, Shin JS (2011) Single Cystathionine b-Synthase Domain–Containing Proteins Modulate Development by Regulating the Thioredoxin System in Arabidopsis. Plant Cell 23: 3577-3594 Zhao D and Ma H (2000) Male fertility: a case of enzyme identity. Current Biology 10: 904-907 Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27: 1445–1460
植物中的雄不稔現象可由許多刺激造成,如荷爾蒙變化、逆境、基因突變等。於本人先前研究中發現阿拉伯芥中一雄不稔之基因Anther Dehiscence Repressor (ADR) 會受到荳蔻酸化修飾並可能參與調控花藥開裂,異位表現ADR於阿拉伯芥中造成花藥不開裂而導致雄不稔,而經由外加茉莉花酸於轉基因植株花苞可挽救該性狀。此外,調控花藥開裂之茉莉花酸其合成酵素的基因表現於轉殖株中亦明顯受到抑制,顯示ADR可能影響茉莉花酸之生合成。本研究則接續ADR進一步的功能性分析。35S:ADR+GFP轉殖菸草葉片中觀察到ADR分布於過氧化體,無法受到荳蔻酸化修飾的35S::ADR-Gly+GFP則停留於胞質中,且35S::ADR-Gly轉殖株並無花藥未開裂之性狀。35S::ADR轉殖株花藥的木質素染色顯示花藥內皮層之次級細胞壁並無增厚,而活性氧物質 (reactive oxygen species, ROS) 中過氧化氫 (H2O2) 的累積為次級細胞壁增厚所需之前置步驟,此過程亦受到影響,此外調控次級細胞壁增厚的NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) 及NST2其表現亦受到抑制。綜合上述結果我們認為ADR在受到荳蔻酸化修飾後會與過氧化體的膜結合,並藉由抑制茉莉花酸活性、H2O2之累積與NST1/NST2表現來調控花藥開裂。

Male-sterility in plants is caused by various stimuli such as hormone change, stress, cytoplasmic and nuclear mutations. Our previous study showed a gene Anther Dehiscence Repressor (ADR) which is modified by N-myristoylation may be involved in regulating male-sterility in Arabidopsis. 35S::ADR transgenic Arabidopsis showed male-sterility due to anther indehiscence. The male-sterility of 35S::ADR was rescued by the application of JA to the transgenic floral buds. Besides, genes participate in JA (jasmonic acid) biosynthesis were suppressed in 35S::ADR transgenic Arabidopsis, indicating that ADR may affect the biosynthesis of JA. In this study, functional analysis of ADR was continued. 35S::ADR+GFP fusion proteins, which can be modified by N-myristoylation, were able to target to peroxisomes, whereas the 35S::ADR-Gly+GFP mutant proteins which lack the N-terminal Gly accumulated in the cytosol and were absent in the peroxisomes. 35S::ADR-Gly that failed to be myristoylated showed normal fertility as that observed in wild-type plants. Lignin staining of anthers showed no secondary thickening or lignification in the anther endothecium of 35S::ADR plant compared to wild-type. 35S::ADR also reduced the ROS accumulation and suppressed the expression of NST1 and NST2 that is necessary for anther dehiscence by regulating the secondary wall thickening in endothetical cells of anthers. These results demonstrated that ADR needs to be N-myristoylated and targeted to the peroxisome to negatively regulate anther dehiscence by suppressing JA activity, ROS accumulation and NST1/NST2 expression.
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-28起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-8099041002-1.pdf3.98 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.