Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96401
標題: 阿拉伯芥中一tetraspanin基因藉由調控植物生長素之反應以控制多種植物發育過程
A tetraspanin gene controlled various plant developmental processes by regulating the auxin response in Arabidopsis thaliana
作者: 陳威豪
Wei-Hao Chen
關鍵字: 四穿膜蛋白;生長素流入;花藥不開裂;tetraspanin;auxin influx;anther indehiscence
引用: Chen, M.-K. (2008). Molecular cloning and functional analysis of genes controlling flower initiation, formation, and senescence in plants. Graduate Institute Of Biotechnology. National Chun Hsing University. Ph. D. Thesis. Chen, W.-H. (2010). Characterization and Functional Analysis of MALE STERILITY INDUCING FACTOR (MSIF) Gene in Arabidopsis thaliana. Graduate Institute Of Biotechnology. National Chun Hsing University. Master Thesis. Hsu, W.-H. (2012). Functional analysis of genes regulating cell division and gametophyte development in Arabidopsis. National Chun Hsing University. Ph. D. Thesis. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. Alvarez-Buyll, E.R., Benítez, M., Corvera-Poiré A., Cador Á.C., Folter, S., Buen, A.G., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R.V., Piñeyro-Nelson, A., and Sánchez-Corralesa, Y.E. (2010). Flower Development. Arabidopsis Book. 8, e0127 Armengot, L., Marques-Bueno, M.M., and Jaillais, Y. (2016). Regulation of polar auxin transport by protein and lipid kinases. Journal of experimental botany 67, 4015-4037. Azooz, M.M., Shaddad, M.A., and Abdel-Latef, A.A. (2004). Leaf growth and K+/Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment. Acta Agronomica Hungarica 52, 287-296. Berditchevski, F., Odintsova, E., Sawada, S., and Gilbert, E. (2002). Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. The Journal of Biological Chemistry 277, 36991-37000. Brioudes, F., Joly, C., Szecsi, J., Varaud, E., Leroux, J., Bellvert, F., Bertrand, C., and Bendahmane, M. (2009). Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. The Plant Journal 60, 1070-1080. Cecchetti, V., Altamura, M.M., Falasca, G., Costantino, P., and Cardarelli, M. (2008). Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20, 1760-1774. Cecchetti, V., Altamura, M.M., Brunetti, P., Petrocelli, V., Falasca, G., Ljung, K., Costantino, P., and Cardarelli, M. (2013). Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. The Plant Journal 74, 411-422. Cha, J.Y., Kim, M.R., Jung, I.J., Kang, S.B., Park, H.J., Kim, M.G., Yun, D.J., and Kim, W.Y. (2016). The thiol reductase activity of yucca6 mediates delayed leaf senescence by regulating genes involved in auxin redistribution. Frontiers in Plant Science 7, 626. Charrin, S., Jouannet, S., Boucheix, C., and Rubinstein, E. (2014). Tetraspanins at a glance. Journal of Cell Science 127, 3641-3648. Charrin, S., Manie, S., Oualid, M., Billard, M., Boucheix, C., and Rubinstein, E. (2002). Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Letters 516, 139-144. Chen, L.-J., Liu, K.-W., Xiao, X.-J., Tsai, W.-C., Hsiao, Y.-Y., Huang, J., and Liu, Z.-J. (2012). The Anther Steps onto the Stigma for Self-Fertilization in a Slipper Orchid. PLoS one 7, e37478. Christenhusz, M.J.M., and BYNG, J.W. (2016). The number of known plants species in the world and its annual increase. 2016 261, 17. Clergeot, P.H., Gourgues, M., Cots, J., Laurans, F., Latorse, M.P., Pepin, R., Tharreau, D., Notteghem, J.L., and Lebrun, M.H. (2001). PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proceedings of the National Academy of Sciences of the United States of America 98, 6963-6968. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743. Cnops, G., Neyt, P., Raes, J., Petrarulo, M., Nelissen, H., Malenica, N., Luschnig, C., Tietz, O., Ditengou, F., Palme, K., Azmi, A., Prinsen, E., and Van Lijsebettens, M. (2006). The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. The Plant Cell 18, 852-866. Dai, X., Mashiguchi, K., Chen, Q., Kasahara, H., Kamiya, Y., Ojha, S., DuBois, J., Ballou, D., and Zhao, Y. (2013). The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. The Journal of Biological Chemistry 288, 1448-1457. De Smet, S., Cuypers, A., Vangronsveld, J., and Remans, T. (2015). Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. International Journal of Molecular Sciences 16, 19195-19224. Delandre, C., Penabaz, T.R., Passarelli, A.L., Chapes, S.K., and Clem, R.J. (2009). Mutation of juxtamembrane cysteines in the tetraspanin CD81 affects palmitoylation and alters interaction with other proteins at the cell surface. Experimental Cell Research 315, 1953-1963. Durek, P., Schmidt, R., Heazlewood, J.L., Jones, A., MacLean, D., Nagel, A., Kersten, B., and Schulze, W.X. (2010). PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Research 38, D828-D834. Edwards, K., Johnstone, C., and Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19, 1349-1349. Finet, C., and Jaillais, Y. (2012). Auxology: when auxin meets plant evo-devo. Developmental Biology 369, 19-31. Garcia-Espana, A., Chung, P.J., Sarkar, I.N., Stiner, E., Sun, T.T., and Desalle, R. (2008). Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91, 326-334. Gutierrez, L., Bussell, J.D., Pacurar, D.I., Schwambach, J., Pacurar, M., and Bellini, C. (2009). Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell 21, 3119-3132. Halova, I., and Draber, P. (2016). Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Frontiers in Cell and Developmental Biology 4, 43. Heazlewood, J.L., Durek, P., Hummel, J., Selbig, J., Weckwerth, W., Walther, D., and Schulze, W.X. (2008). PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Research 36, D1015-D1021. Hemsley, P.A., Taylor, L., and Grierson, C.S. (2008). Assaying protein palmitoylation in plants. Plant methods 4, 2. Hsu, H.-F., Hsu, W.-H., Lee, Y.-I., Mao, W.-T., Yang, J.-Y., Li, J.-Y., and Yang, C.-H. (2015). Model for perianth formation in orchids. Nature Plants 1, 15046. Hua, L.V., Green, M., Wong, A., Warsh, J.J., and Li, P.P. (2001). Tetraspan protein CD151: a common target of mood stabilizing drugs? Neuropsychopharmacology 25, 729-736. Huang, S., Yuan, S., Dong, M., Su, J., Yu, C., Shen, Y., Xie, X., Yu, Y., Yu, X., Chen, S., Zhang, S., Pontarotti, P., and Xu, A. (2005). The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86, 674-684. Israels, S.J., and McMillan-Ward, E.M. (2010). Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thrombosis Research 125, 152-158. Kim, J.I., Murphy, A.S., Baek, D., Lee, S.W., Yun, D.J., Bressan, R.A., and Narasimhan, M.L. (2011). YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany 62, 3981-3992. Kinoshita, N., Wang, H., Kasahara, H., Liu, J., Macpherson, C., Machida, Y., Kamiya, Y., Hannah, M.A., and Chua, N.H. (2012). IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. The Plant Cell 24, 3590-3602. Lambou, K., Tharreau, D., Kohler, A., Sirven, C., Marguerettaz, M., Barbisan, C., Sexton, A.C., Kellner, E.M., Martin, F., Howlett, B.J., Orbach, M.J., and Lebrun, M.H. (2008). Fungi have three tetraspanin families with distinct functions. BMC Genomics 9, 63. Lammerding, J., Kazarov, A.R., Huang, H., Lee, R.T., and Hemler, M.E. (2003). Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening. Proceedings of the National Academy of Sciences 100, 7616-7621. Lampugnani, E.R., Kilinc, A., and Smyth, D.R. (2012). PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. The Plant Journal 71, 724-735. Lampugnani, E.R., Kilinc, A., and Smyth, D.R. (2013). Auxin controls petal initiation in Arabidopsis. Development 140, 185-194. Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., and Laplaze, L. (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science 18, 450-458. Lee, M., Jung, J.H., Han, D.Y., Seo, P.J., Park, W.J., and Park, C.M. (2012). Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235, 923-938. Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., Gu, H., Zhao, Y., and Qu, L.J. (2008). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports 27, 575-584. Li, X., Luo, J., Yan, T., Xiang, L., Jin, F., Qin, D., Sun, C., Xie, M. (2013) Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS one 8: e85480 Li, Q., Yin, M., Li, Y., Fan, C., Yang, Q., Wu, J., Zhang, C., Wang, H., and Zhou, Y. (2015). Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. Journal of Experimental Botany 66, 5821-5836. Lieber, D., Lora, J., Schrempp, S., Lenhard, M., and Laux, T. (2011). Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate. Current Biology 21, 1009-1017. Liu, K.-W., Liu, Z.-J., Huang, L., Li, L.-Q., Chen, L.-J., and Tang, G.-D. (2006). Pollination: Self-fertilization strategy in an orchid. Nature 441, 945-946. Lucas, M., Godin, C., Jay-Allemand, C., and Laplaze, L. (2008a). Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. Journal of Experimental Botany 59, 55-66. Lucas, M., Godin, C., Jay-Allemand, C., and Laplaze, L. (2008b). Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. Journal of Experimental Botany 59, 55-66. Ludwig-Muller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62, 1757-1773. Malamy, J.E., and Benfey, P.N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44. Mironova, V., Teale, W., Shahriari, M., Dawson, J., and Palme, K. (2017). The Systems Biology of Auxin in Developing Embryos. Trends in Plant Science 22, 225-235. Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell 17, 2993-3006. Moller, B.K., Xuan, W., and Beeckman, T. (2017). Dynamic control of lateral root positioning. Current Opinion in Plant Biology 35, 1-7. Murashige, T., and Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15, 473-497. Olmos, E., Reiss, B., and Dekker, K. (2003). The ekeko mutant demonstrates a role for tetraspanin-like protein in plant development. Biochemical and Biophysical Research Communications 310, 1054-1061. Overvoorde, P., Fukaki, H., and Beeckman, T. (2010). Auxin control of root development. Cold Spring Harb Perspect Biol 2, a001537. Peret, B., De Rybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., Beeckman, T., and Bennett, M.J. (2009). Arabidopsis lateral root development: an emerging story. Trends in Plant Science 14, 399-408. Peret, B., Li, G., Zhao, J., Band, L.R., Voss, U., Postaire, O., Luu, D.T., Da Ines, O., Casimiro, I., Lucas, M., Wells, D.M., Lazzerini, L., Nacry, P., King, J.R., Jensen, O.E., Schaffner, A.R., Maurel, C., and Bennett, M.J. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology 14, 991-998. Peret, B., Middleton, A.M., French, A.P., Larrieu, A., Bishopp, A., Njo, M., Wells, D.M., Porco, S., Mellor, N., Band, L.R., Casimiro, I., Kleine-Vehn, J., Vanneste, S., Sairanen, I., Mallet, R., Sandberg, G., Ljung, K., Beeckman, T., Benkova, E., Friml, J., Kramer, E., King, J.R., De Smet, I., Pridmore, T., Owen, M., and Bennett, M.J. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology 9, 699. Pesquet, E., Ranocha, P., Legay, S., Digonnet, C., Barbier, O., Pichon, M., and Goffner, D. (2005). Novel markers of xylogenesis in zinnia are differentially regulated by auxin and cytokinin. Plant Physiology 139, 1821-1839. Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G., and Ljung, K. (2009). An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. The Plant Cell 21, 1659-1668. Potel, J., Rassam, P., Montpellier, C., Kaestner, L., Werkmeister, E., Tews, B.A., Couturier, C., Popescu, C.I., Baumert, T.F., Rubinstein, E., Dubuisson, J., Milhiet, P.E., and Cocquerel, L. (2013). EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cell Microbiology 15, 1234-1252. Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., and Yao, X. (2008). CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Engineering, Design and Selection 21, 639-644. Salaun, C., Greaves, J., and Chamberlain, L.H. (2010). The intracellular dynamic of protein palmitoylation. The Journal of Cell Biology 191, 1229-1238. Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., and Swarup, R. (2015). New insights into root gravitropic signalling. Journal of Experimental Botany 66, 2155-2165. Sauer, M., Robert, S., and Kleine-Vehn, J. (2013). Auxin: simply complicated. Journal of Experimental Botany 64, 2565-2577. Sauret-Gueto, S., Schiessl, K., Bangham, A., Sablowski, R., and Coen, E. (2013). JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biology 11, e1001550. Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., and Chan, Z. (2014). Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry 82, 209-217. Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., and Suza, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17, 616-627. Steiner-Lange, S., Unte, U.S., Eckstein, L., Yang, C., Wilson, Z.A., Schmelzer, E., Dekker, K., and Saedler, H. (2003). Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. The Plant Journal 34, 519-528. Stepanova, A.N., and Alonso, J.M. (2005). Arabidopsis ethylene signaling pathway. Science's signal transduction knowledge environment 276, cm4. Stipp, C.S., Kolesnikova, T.V., and Hemler, M.E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences 28, 106-112. Su, C.-l., Chao, Y.-T., Yen, S.-H., Chen, C.-Y., Chen, W.-C., Chang, Y.-C.A., and Shih, M.-C. (2013). Orchidstra: An Integrated Orchid Functional Genomics Database. Plant and Cell Physiology 54, e11-e11. Su CL, Chen WC, Lee AY, Chen CY, Chang YC, Chao YT, Shih MC. (2013) A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS one 8: e80462 Swartzberg, D., Dai, N., Gan, S., Amasino, R., and Granot, D. (2006). Effects of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biology 8, 579-586. Tabata, R., Ikezaki, M., Fujibe, T., Aida, M., Tian, C.E., Ueno, Y., Yamamoto, K.T., Machida, Y., Nakamura, K., and Ishiguro, S. (2010). Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology 51, 164-175. Tan, K.-h., and Nishida, R. (2000). Mutual Reproductive Benefits Between a Wild Orchid, Bulbophyllum patens, and Bactrocera Fruit Flies via a Floral Synomone. Journal of Chemical Ecology 26, 533-546. Teale, W.D., Paponov, I.A., and Palme, K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology 7, 847-859. Tulloch, L.B., Howie, J., Wypijewski, K.J., Wilson, C.R., Bernard, W.G., Shattock, M.J., and Fuller, W. (2011). The Inhibitory Effect of Phospholemman on the Sodium Pump Requires Its Palmitoylation. Journal of Biological Chemistry 286, 36020-36031. Varaud, E., Brioudes, F., Szecsi, J., Leroux, J., Brown, S., Perrot-Rechenmann, C., and Bendahmane, M. (2011). AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. The Plant Cell 23, 973-983. Wang, F., Muto, A., Van de Velde, J., Neyt, P., Himanen, K., Vandepoele, K., and Van Lijsebettens, M. (2015). Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development. Plant Physiology 169, 2200-2214. Wang, H.-X., Kolesnikova, T.V., Denison, C., Gygi, S.P., and Hemler, M.E. (2011). The C-terminal tail of tetraspanin protein CD9 contributes to its function and molecular organization. Journal of Cell Science 124, 2702. Wuyts, N., Palauqui, J.-C., Conejero, G., Verdeil, J.-L., Granier, C., and Massonnet, C. (2010). High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll. Plant Methods 6, 17-17. Xuan, W., Band, L.R., Kumpf, R.P., Van Damme, D., Parizot, B., De Rop, G., Opdenacker, D., Möller, B.K., Skorzinski, N., Njo, M.F., De Rybel, B., Audenaert, D., Nowack, M.K., Vanneste, S., and Beeckman, T. (2016). Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351, 384-387. Yang, C., Xu, Z., Song, J., Conner, K., Vizcay Barrena, G., and Wilson, Z.A. (2007). Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. The Plant Cell 19, 534-548. Yang, J.H., Han, S.J., Yoon, E.K., and Lee, W.S. (2006). 'Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells'. Nucleic Acids Research 34, 1892-1899. Yang, X., Claas, C., Kraeft, S.K., Chen, L.B., Wang, Z., Kreidberg, J.A., and Hemler, M.E. (2002). Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Molecular Biology of the Cell 13, 767-781. Zahir, Z.A., Shah, M.K., Naveed, M., and Akhter, M.J. (2010). Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. Journal of Microbiology and Biotechnology 20, 1288-1294. Zhang, X.A., Kazarov, A.R., Yang, X., Bontrager, A.L., Stipp, C.S., and Hemler, M.E. (2002). Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Molecular Biology of the Cell 13, 1-11. Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology 61, 49-64. Zhou, B., Liu, L., Reddivari, M., and Zhang, X.A. (2004). The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Research 64, 7455-7463. Zuidscherwoude, M., Gottfert, F., Dunlock, V.M., Figdor, C.G., van den Bogaart, G., and van Spriel, A.B. (2015). The tetraspanin web revisited by super-resolution microscopy. Scientific Reports 5, 12201.
摘要: 
蘭科植物花被為兩側對稱型,而在不同構造之花被上其分子調控機制尚未明瞭。本實驗室先前研究發現文心蘭中的MADS box 基因Oncidium AGAMOUS-LIKE 6-2 (OAGL6-2) 在唇瓣發育中扮演重要角色,當其表現量下降會使唇瓣縮小並表現出花萼花瓣的特徵,在本實驗室先前研究中發現阿拉伯芥中異位表現OAGL6-2將正調控MALE STERILITY INDUCING FACTOR (MSIF) 基因表現,MSIF為TETRASPANIN (TET) 基因家族的一員。目前已知真核多細胞生物之基因資料庫中都能找到TET基因,在哺乳動物細胞中發現,TET蛋白在轉譯後棕梠酸修飾後,會彼此或與其他細胞膜蛋白交互作用形成一個特異性區域 (tetraspanin-rich domain),在生長發育、免疫反應及細胞行為中扮演重要角色,而在植物中,TET蛋白的功能仍未清楚了解。在本人碩士論文研究中發現MSIF主要表現在分生組織、根部及花苞中花被,而在阿拉伯芥大量表現MSIF有較高的乾旱及鹽耐受性,並降低植物賀爾蒙茉莉酸合成,造成花藥不開裂產生雄不稔性狀。在本研究中接續先前研究,進一步發現大量表現MSIF植株有較大的花器和種子,除了降低茉莉酸合成外,也抑制了花藥囊腔內皮細胞的木質化,為導致花藥不開裂的另一原因。相反的,大量表現缺乏棕梠酸修飾之MSIFplm植株有提早老化的現象,性狀較輕微植株有較小的花器,綜合以上性狀認為MSIF功能可能和植物生長素有關。進一步研究顯示大量表現MSIF在DR5:GFP植株中會增加GFP表現量,表示植物細胞內植物生長素含量較高或對生長素反應較大。進一步觀察轉基因植物根部,35S:MSIF有較多的側根且側根生長速度較快,且在IAA處理下仍有向地性,這些根部的性狀皆會受到處理生長素流入細胞的抑制劑2-NOA影響,恢復和野生型植株相同性狀;35S:MSIFplm在根部發育中對植物生長素的處理則較不敏感。上述研究結果指出,MSIF蛋白會經由轉譯後棕梠酸修飾後促進植物生長素流入細胞中。此外,我們發現在截去蛋白C端的MSIF大量表現植株中 (35S:MSIFΔC),表現出與35S:MSIF相同性狀且更嚴重,因此初步認為,MSIF蛋白C端有抑制MSIF功能的序列存在,可能為磷酸化的調控,需要更進一步的實驗證實。我們在蘭科植物中也發現MSIF同源基因在較大的文心蘭唇瓣及蝴蝶蘭花瓣發育早期有較高的表現量,因此認為其功能可能再花被發育中期增加植物生長素流入細胞,藉以控制花被大小。

The flowers of Orchidaceae are zygomorphic. The molecular mechanisms of gene regulation during perianths development are still unclear. In previous studies, Oncidium AGAMOUS-LIKE 6-2 (OAGL6-2) functions as the determinant unit of lip development. MALE STERILITY INDUCING FACTOR (MSIF), a member of TETRASPANIN gene family, was up-regulated in Arabidopsis overexpressing OAGL6-2. TETRASPANINs are evolutionary conserved transmembrane proteins present in existing gene databases of multicellular organisms. In mammals, tetraspanins interact with each other or other membrane proteins to form tetraspanin-enriched microdomains that play important roles in development and immune response. The functions of tetraspanins in plants are still poorly known. In our previous study, MSIF was expressed in meristems, roots and perianths in flower buds of Arabidopsis. 35:MSIF Arabidopsis showed higher tolerance to drought and salt stress. 35S:MSIF plant shows anther indehiscence due to the reduction of jasmonate (JA) synthesis.In this study, we found that 35S:MSIF plants showed larger flowers and seeds. The anther indehiscence was also caused by the deficient of lignification in the anther endothecium. In contrast, the ectopic expressing palmitoylation-deficient MSIF (35S:MSIFplm) showed a severe phenotype early senescence and a medium-severe phenotype smaller flowers and seeds. We confirmed the palmitoylation of MSIF using biotin switch assay of palmitoylation. Altogether, the function of MSIF may be involved in regulating of auxin. This hypothesis is supposed by the higher expression of GFP in DR5:GFP/35S:MSIF plant. Furthermore, 35S:MSIF developed lateral roots more and faster. The gravitopism was also stronger in 35S:MSIF with IAA treatment. These phenotypes in roots were blocked with a auxin influx inhibitor, 2-NOA, treatment. In consistent, the roots development of 35S:MSIFplm dominant-negative mutant plants were insensitive in auxin treatment. These results indicated that MSIF was palmitoylated and enhanced the auxin influx. In addition, 35S:MSIFΔC plants showed severe phenotype which were in consistent with 35S:MSIF. It indicated that the C-terminal of MSIF negatively regulated its own functions. Further analysis of the sequence, phosphorylation sites were predicted. The phosphorylation may regulate the functions of MSIF at protein level. We also identified MSIF orthologues in Oncidium and Phalaenopsis. The expression levels of MSIF orthologues were higher in lip of Oncidium and petal of Phalaenopsis. The expression pattern indicated that the function of MSIF may be involved in the size development of perianths.
URI: http://hdl.handle.net/11455/96401
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-28起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-8099041003-1.pdf2.79 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.