Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorKuo-Chen Yehen_US
dc.contributor.authorSakthivel Kailasamen_US
dc.identifier.citationAiraki, M., Sanchez-Moreno, L., Leterrier, M., Barroso, J.B., Palma, J.M. and Corpas, F.J. (2011) Detection and quantification of S-Nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/MS. Plant Cell Physiol. 52, 2006-2015. Albertos, P., Romero-Puertas, M.C., Tatematsu, K., Mateos, I., Sanchez-Vicente, I., Nambara, E. and Lorenzo, O. (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun. 6, 8669. Ali, R. and Siddiqui, N. (2013) Biological aspects of emerging benzothiazoles: a short review. J. Chem. 2013, 345198. Andersen, T.G., Barberon, M. and Geldner, N. (2015) Suberization - the second life of an endodermal cell. Curr Opin Plant Biol. 28, 9-15. Arnaud, C., Clement, M., Thibaud, M.C., Javot, H., Chiarenza, S., Delannoy, E., Revol, J., Soreau, P., Balzergue, S., Block, M.A., Marechal, E., Desnos, T. and Nussaume, L. (2014) Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis. Plant Physiol. 166, 1479-1491. Austin, R.S., Vidaurre, D., Stamatiou, G., Breit, R., Provart, N.J., Bonetta, D., Zhang, J., Fung, P., Gong, Y., Wang, P.W., McCourt, P. and Guttman, D.S. (2011) Next-generation mapping of Arabidopsis genes. Plant J. 67, 715-725. Bailey-Serres, J. (1999) Selective translation of cytoplasmic mRNAs in plants. Trends Plant Sci. 4, 142-148. Bailey, P.C., Martin, C., Toledo-Ortiz, G., Quail, P.H., Huq, E., Heim, M.A., Jakoby, M., Werber, M. and Weisshaar, B. (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 15, 2497-2502. Balk, J. and Schaedler, T.A. (2014) Iron cofactor assembly in plants. Annu. Rev. Plant Biol. 65, 125-153. Barberon, M. (2017) The endodermis as a checkpoint for nutrients. New Phytol. 213, 1604-1610. Barberon, M. and Geldner, N. (2014) Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol. 166, 528-537. Barberon, M., Vermeer, J.E.M., De Bellis, D., Wang, P., Naseer, S., Andersen, T.G., Humbel, B.M., Nawrath, C., Takano, J., Salt, D.E. and Geldner, N. (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell, 164, 447-459. Barroso, J.B., Corpas, F.J., Carreras, A., Rodriguez-Serrano, M., Esteban, F.J., Fernandez-Ocana, A., Chaki, M., Romero-Puertas, M.C., Valderrama, R., Sandalio, L.M. and del Rio, L.A. (2006) Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress. J. Exp. Bot. 57, 1785-1793. Bauer, P., Ling, H.Q. and Guerinot, M.L. (2007) FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. Plant Physiol. Biochem. 45, 260-261. Begara-Morales, J.C., Sanchez-Calvo, B., Luque, F., Leyva-Perez, M.O., Leterrier, M., Corpas, F.J. and Barroso, J.B. (2014) Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol. 55, 1080-1095. Bethke, P.C., Libourel, I.G. and Jones, R.L. (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 57, 517-526. Bonnot, C., Pinson, B., Clement, M., Bernillon, S., Chiarenza, S., Kanno, S., Kobayashi, N., Delannoy, E., Nakanishi, T.M., Nussaume, L. and Desnos, T. (2016) A chemical genetic strategy identify the PHOSTIN, a synthetic molecule that triggers phosphate starvation responses in Arabidopsis thaliana. New Phytol. 209, 161-176. Briat, J.F., Dubos, C. and Gaymard, F. (2014) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci. 20, 33-40. Brumbarova, T., Bauer, P. and Ivanov, R. (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20, 124-133. Buckhout, T.J., Yang, T.J. and Schmidt, W. (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics, 10, 147. Burch-Smith, T.M. and Zambryski, P.C. (2012) Plasmodesmata paradigm shift: regulation from without versus within. Annu. Rev. Plant Biol. 63, 239-260. Carpenter, B.M., Whitmire, J.M. and Merrell, D.S. (2009) This is not your mother's repressor: the complex role of fur in pathogenesis. Infection and immunity, 77, 2590-2601. Castaings, L., Caquot, A., Loubet, S. and Curie, C. (2016) The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Sci Rep. 6, 37222. Chen, W.W., Yang, J.L., Qin, C., Jin, C.W., Mo, J.H., Ye, T. and Zheng, S.J. (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol. 154, 810-819. Chen, Y.T., Wang, Y. and Yeh, K.C. (2017) Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 39, 66-72. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B. and Tzfira, T. (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362, 1120-1131. Clemens, S. and Weber, M. (2016) The essential role of coumarin secretion for Fe acquisition from alkaline soil. Plant Signal. Behav. 11, e1114197. Colangelo, E.P. and Guerinot, M.L. (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell, 16, 3400-3412. Colombo, C., Palumbo, G., He, J.Z., Pinton, R. and Cesco, S. (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soil Sediment, 14, 538-548. Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L. and Guerinot, M.L. (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133, 1102-1110. Connolly, E.L., Fett, J.P. and Guerinot, M.L. (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14, 1347-1357. Connorton, J.M., Balk, J. and Rodriguez-Celma, J. (2017) Iron homeostasis in plants - a brief overview. Metallomics, 9, 813-823. Corpas, F.J., Alche, J.D. and Barroso, J.B. (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front. Plant Sci. 4, 126. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F. and Walker, E.L. (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346-349. Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Jean, M., Misson, J., Schikora, A., Czernic, P. and Mari, S. (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann. Bot. 103, 1-11. Curie, C. and Mari, S. (2017) New routes for plant iron mining. New Phytol. 214, 521-525. Darbani, B., Briat, J.F., Holm, P.B., Husted, S., Noeparvar, S. and Borg, S. (2013) Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol. Adv. 31, 1292-1307. De Rybel, B., Audenaert, D., Beeckman, T. and Kepinski, S. (2009) The past, present, and future of chemical biology in auxin research. ACS Chem. Biol. 4, 987-998. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M. and Gascuel, O. (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465-469. Divol, F., Couch, D., Conejero, G., Roschzttardtz, H., Mari, S. and Curie, C. (2013) The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. Plant Cell, 25, 1040-1055. Dubeaux, G., Zelazny, E. and Vert, G. (2015) Getting to the root of plant iron uptake and cell-cell transport: polarity matters! Communicative & integrative biology, 8, e1038441. Duy, D., Stube, R., Wanner, G. and Philippar, K. (2011) The Chloroplast Permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol. 155, 1709-1722. Espunya, M.C., De Michele, R., Gomez-Cadenas, A. and Martinez, M.C. (2012) S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J. Exp.Bot. 63, 3219-3227. Fernandez-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K. and Lorenzo, O. (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. U.S.A. 108, 18506-18511. Figaro, S., Scrima, N., Buckingham, R.H. and Heurgue-Hamard, V. (2008) HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. FEBS Lett. 582, 2352-2356. Foster, M.W., Liu, L., Zeng, M., Hess, D.T. and Stamler, J.S. (2009) A genetic analysis of nitrosative stress. Biochem. 48, 792-799. Fourcroy, P., Siso-Terraza, P., Sudre, D., Saviron, M., Reyt, G., Gaymard, F., Abadia, A., Abadia, J., Alvarez-Fernandez, A. and Briat, J.F. (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201, 155-167. Fourcroy, P., Tissot, N., Gaymard, F., Briat, J.F. and Dubos, C. (2016) Facilitated fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system. Mol. Plant, 9, 485-488. Gamm, M., Peviani, A., Honsel, A., Snel, B., Smeekens, S. and Hanson, J. (2014) Increased sucrose levels mediate selective mRNA translation in Arabidopsis. BMC Plant Biol. 14, 306. Gao, Y.Q. and Chao, D.Y. (2016) Get more acids for more iron: a new regulatory pathway for iron homeostasis. Mol. Plant, 9, 498-500. Garcia, M.J., Lucena, C., Romera, F.J., Alcantara, E. and Perez-Vicente, R. (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 61, 3885-3899. Garcia, M.J., Romera, F.J., Lucena, C., Alcantara, E. and Perez-Vicente, R. (2015) Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol. 169, 51-60. Garcia, M.J., Suarez, V., Romera, F.J., Alcantara, E. and Perez-Vicente, R. (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol. Biochem. 49, 537-544. Gayomba, S.R., Zhai, Z., Jung, H.I. and Vatamaniuk, O.K. (2015) Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front. Plant Sci. 6, 716. Geldner, N. (2013) Casparian strips. Curr. Biol. 23, R1025-R1026. Gollhofer, J., Timofeev, R., Lan, P., Schmidt, W. and Buckhout, T.J. (2014) Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis. PloS One, 9, e110468. Gould, N., Doulias, P.T., Tenopoulou, M., Raju, K. and Ischiropoulos, H. (2013) Regulation of protein function and signaling by reversible cysteine s-nitrosylation. J. Biol. Chem. 288, 26473-26479. Graziano, M. and Lamattina, L. (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 52, 949-960. Grefen, C., Donald, N., Hashimoto, K., Kudla, J., Schumacher, K. and Blatt, M.R. (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 64, 355-365. Guerinot, M.L. and Yi, Y. (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol. 104, 815-820. Hicks, G.R. and Raikhel, N.V. (2012) Small molecules present large opportunities in plant biology. Annu. Rev. Plant Biol. 63, 261-282. Hindt, M.N., Akmakjian, G.Z., Pivarski, K.L., Punshon, T., Baxter, I., Salt, D.E. and Guerinot, M.L. (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics, 9, 876-890. Hindt, M.N. and Guerinot, M.L. (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta, 1823, 1521-1530. Hu, X., Page, M.T., Sumida, A., Tanaka, A., Terry, M.J. and Tanaka, R. (2017) The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. Plant J. 89, 1184-1194. Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2009) Rice OsYSL15 Is an Iron-regulated Iron(III)-Deoxymugineic Acid Transporter Expressed in the Roots and Is Essential for Iron Uptake in Early Growth of the Seedlings. J. Biol. Chem. 284, 3470-3479. Jakoby, M., Wang, H.Y., Reidt, W., Weisshaar, B. and Bauer, P. (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 577, 528-534. Jeong, J., Merkovich, A., Clyne, M. and Connolly, E.L. (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr. Opin. Plant Biol. 39, 106-113. Khanam, H. and Shamsuzzaman (2015) Bioactive benzofuran derivatives: A review. Eur. J. Med. Chem. 97, 483-504. Kim, S.A. and Guerinot, M.L. (2007) Mining iron: Iron uptake and transport in plants. FEBS Lett. 581, 2273-2280. Kim, Y., Schumaker, K.S. and Zhu, J.K. (2006) EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 323, 101-103. Kobayashi, T., Itai, R.N., Ogo, Y., Kakei, Y., Nakanishi, H., Takahashi, M. and Nishizawa, N.K. (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J. 60, 948-961. Kobayashi, T. and Nishizawa, N.K. (2012) Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63, 131-152. Kobayashi, T. and Nishizawa, N.K. (2015) Intracellular iron sensing by the direct binding of iron to regulators. Front. Plant Sci. 6, 155. Koen, E., Szymanska, K., Klinguer, A., Dobrowolska, G., Besson-Bard, A. and Wendehenne, D. (2012) Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. Plant Signal. Behav. 7, 1246-1250. Korshunova, Y.O., Eide, D., Clark, W.G., Guerinot, M.L. and Pakrasi, H.B. (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 40, 37-44. Lanquar, V., Lelievre, F., Bolte, S., Hames, C., Alcon, C., Neumann, D., Vansuyt, G., Curie, C., Schroder, A., Kramer, U., Barbier-Brygoo, H. and Thomine, S. (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24, 4041-4051. Le, C.T., Brumbarova, T., Ivanov, R., Stoof, C., Weber, E., Mohrbacher, J., Fink-Straube, C. and Bauer, P. (2016) ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) linking iron deficiency and oxidative stress responses. Plant Physiol. 170, 540-557. Lei, G.J., Zhu, X.F., Wang, Z.W., Dong, F., Dong, N.Y. and Zheng, S.J. (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ. 37, 852-863. Leterrier, M., Chaki, M., Airaki, M., Valderrama, R., Palma, J.M., Barroso, J.B. and Corpas, F.J. (2011) Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signal. Behav. 6, 789-793. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and Genome Project Data Processing, S. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079. Li, X.L., Zhang, H.M., Ai, Q., Liang, G. and Yu, D. (2016a) Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol. 170, 2478-93. Li, S., Zhou, X., Chen, J. and Chen, R. (2016b) Is there a strategy I iron uptake mechanism in maize? Plant signaling & behavior, 0. Liang, G., Zhang, H., Li, X., Ai, Q. and Yu, D. (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J. Exp. Bot. 68, 1743-1755. Lin, X.Y., Ye, Y.Q., Fan, S.K., Jin, C.W. and Zheng, S.J. (2015) Increased sucrose accumulation regulates iron-deficiency responses by promoting auxin signaling in Arabidopsis plants. Plant Physiol. 170, 907-20. Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P. and Bauer, P. (2011) Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell, 23, 1815-1829. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3-26. Liu, X.X., He, X.L. and Jin, C.W. (2016) Roles of chemical signals in regulation of the adaptive responses to iron deficiency. Plant Signal. Behav. 11, e1179418. Long, T.A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D.E. and Benfey, P.N. (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell, 22, 2219-2236. Long, L., Persson, D.P., Duan, F., Jorgensen, K., Yuan, L., Schjoerring, J.K. and Pedas, P.R. (2017) The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley. New Phytol. doi:10.1111/nph.14930. Luehrsen, K.R., de Wet, J.R. and Walbot, V. (1992) Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol. 216, 397-414. Mai, H.J., Pateyron, S. and Bauer, P. (2016) Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. BMC Plant Biol. 16, 211. Malik, S.I., Hussain, A., Yun, B.W., Spoel, S.H. and Loake, G.J. (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci. 181, 540-544. Martinez-Silva, A.V., Aguirre-Martinez, C., Flores-Tinoco, C.E., Alejandri-Ramirez, N.D. and Dinkova, T.D. (2012) Translation Initiation Factor AteIF(iso) 4E is involved in selective mrna translation in Arabidopsis thaliana seedlings. PloS One, 7, e31606. Marty, L., Siala, W., Schwarzlander, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.P. and Hell, R. (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106, 9109-9114. Mary, V., Schnell Ramos, M., Gillet, C., Socha, A.L., Giraudat, J., Agorio, A., Merlot, S., Clairet, C., Kim, S.A., Punshon, T., Guerinot, M.L. and Thomine, S. (2015) Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 double mutant. Plant Physiol. 169, 748-759. Matthiadis, A. and Long, T.A. (2016) Further insight into BRUTUS domain composition and functionality. Plant Signal. Behav. 11, e1204508. Maurer, F., Arcos, M.A.N. and Bauer, P. (2014) Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib(2) to iron deficiency and salicylic acid. PloS One, 9, e99234. Meiser, J., Lingam, S. and Bauer, P. (2011) Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol. 157, 2154-2166. Mostofa, M.G., Seraj, Z.I. and Fujita, M. (2015) Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant Signal. Behav. 10, e991570. Mukherjee, I., Campbell, N.H., Ash, J.S. and Connolly, E.L. (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta, 223, 1178-1190. Nakahigashi, K., Kubo, N., Narita, S., Shimaoka, T., Goto, S., Oshima, T., Mori, H., Maeda, M., Wada, C. and Inokuchi, H. (2002) HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc. Natl. Acad. Sci. U.S.A. 99, 1473-1478. Nenova, V. (2009) Growth and photosynthesis of pea plants under different iron supply. Acta Physiol. Plant. 31, 385-391. Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J. and Mizuno, T. (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol. 52, 1433-1442. Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H. and Nishizawa, N.K. (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 286, 5446-5454. Ogo, Y., Kobayashi, T., Itai, R.N., Nakanishi, H., Kakei, Y., Takahashi, M., Toki, S., Mori, S. and Nishizawa, N.K. (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J. Biol. Chem. 283, 13407-13417. Outten, C.E. and Albetel, A.N. (2013) Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Curr. Opin. Microbiol. 16, 662-668. Palmer, C.M., Hindt, M.N., Schmidt, H., Clemens, S. and Guerinot, M.L. (2013) MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9, e1003953. Paris, R., Iglesias, M.J., Terrile, M.C. and Casalongue, C.A. (2013) Functions of S-nitrosylation in plant hormone networks. Front. Plant Sci. 4, 294. Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F. and Cutler, S.R. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, 1068-1071. Perron, N.R. and Brumaghim, J.L. (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 53, 75-100. Polevoda, B., Span, L. and Sherman, F. (2006) The yeast translation release factors Mrf1p and Sup45p (eRF1) are methylated, respectively, by the methyltransferases Mtq1p and Mtq2p. J. Biol. Chem. 281, 2562-2571. Ramirez, L., Bartoli, C.G. and Lamattina, L. (2013) Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J. Exp. Bot. 64, 3169-3178. Ramirez, L., Simontacchi, M., Murgia, I., Zabaleta, E. and Lamattina, L. (2011) Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. Plant Sci. 181, 582-592. Robinson, N.J., Procter, C.M., Connolly, E.L. and Guerinot, M.L. (1999) A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694-697. Rogers, E.E. and Guerinot, M.L. (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell. 14, 1787-1799. Romera, F.J., Alcantara, E. and De la Guardia, M.D. (1999) Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Ann Bot. 83, 51-55. Romero-Puertas, M.C., Rodriguez-Serrano, M. and Sandalio, L.M. (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front. Plant Sci. 4, 373. Romheld, V. and Marschner, H. (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175-180. Rouault, T.A. (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406-414. Rutherford, J.C., Jaron, S. and Winge, D.R. (2003) Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J. Biol. Chem. 278, 27636-27643. Santi, S. and Schmidt, W. (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 183, 1072-1084. Sattelmacher, B. (2001) Tansley review no. 22 - The apoplast and its significance for plant mineral nutrition. New Phytol. 149, 167-192. Schmid, N.B., Giehl, R.F.H., Doll, S., Mock, H.P., Strehmel, N., Scheel, D., Kong, X.L., Hider, R.C. and von Wiren, N. (2014) Feruloyl-CoA 6 '-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164, 160-172. Schmidt, W. (1993) Iron stress-induced redox reactions in bean roots. Physiol. Plant. 89, 448-452. Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108. Selote, D., Samira, R., Matthiadis, A., Gillikin, J.W. and Long, T.A. (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol. 167, 273-286. Serrano, M., Kombrink, E. and Meesters, C. (2015) Considerations for designing chemical screening strategies in plant biology. Front. Plant Sci. 6, 131. Shanmugam, V., Lo, J.C., Wu, C.L., Wang, S.L., Lai, C.C., Connolly, E.L., Huang, J.L. and Yeh, K.C. (2011) Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana - the role in zinc tolerance. New Phytol. 190, 125-137. Shanmugam, V., Tsednee, M. and Yeh, K.C. (2012) ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J. 69, 1006-1017. Shanmugam, V., Wang, Y.W., Tsednee, M., Karunakaran, K. and Yeh, K.C. (2015) Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Plant J. 84, 464-477. Shen, C., Yang, Y., Liu, K., Zhang, L., Guo, H., Sun, T. and Wang, H. (2016) Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis. J. Exp. Bot. 67, 4179-4193. Shin, L.J., Lo, J.C., Chen, G.H., Callis, J., Fu, H. and Yeh, K.C. (2013) IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. Plant Cell, 25, 3039-3051. Sivitz, A.B., Hermand, V., Curie, C. and Vert, G. (2012) Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PloS One, 7. Skelly, M.J., Frungillo, L. and Spoel, S.H. (2016) Transcriptional regulation by complex interplay between post-translational modifications. Curr. Opin. Plant Biol. 33, 126-132. Sondergaard, T.E., Schulz, A. and Palmgren, M.G. (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol. 136, 2475-2482. Toledo-Ortiz, G., Huq, E. and Quail, P.H. (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 15, 1749-1770. Uchida, N., Sakamoto, T., Tasaka, M. and Kurata, T. (2014) Identification of EMS-induced causal mutations in Arabidopsis thaliana by next-generation sequencing. Methods Mol. Biol. 1062, 259-270. Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F. and Curie, C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14, 1223-1233. Vert, G.A., Briat, J.F. and Curie, C. (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 132, 796-804. Vigani, G., Zocchi, G., Bashir, K., Philippar, K. and Briat, J.F. (2013) Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18, 305-311. Wang, H.Y., Klatte, M., Jakoby, M., Baumlein, H., Weisshaar, B. and Bauer, P. (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 226, 897-908. Wang, J., Luo, C., Shan, C., You, Q., Lu, J., Elf, S., Zhou, Y., Wen, Y., Vinkenborg, J.L., Fan, J., Kang, H., Lin, R., Han, D., Xie, Y., Karpus, J., Chen, S., Ouyang, S., Luan, C., Zhang, N., Ding, H., Merkx, M., Liu, H., Chen, J., Jiang, H. and He, C. (2015) Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nature Chem. 7, 968-979. Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., Yuan, Y., Wu, H. and Ling, H.Q. (2013) Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol. Plant, 6, 503-513. Wang, Y., Yun, B.W., Kwon, E., Hong, J.K., Yoon, J. and Loake, G.J. (2006) S-nitrosylation: an emerging redox-based post-translational modification in plants. J. Exp. Bot. 57, 1777-1784. Wellburn, A.R. (1994) The Spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 144, 307-313. Wild, M., Daviere, J.M., Regnault, T., Sakvarelidze-Achard, L., Carrera, E., Lopez Diaz, I., Cayrel, A., Dubeaux, G., Vert, G. and Achard, P. (2016) Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses. Dev. Cell, 37, 190-200. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T. and Lin, C.S. (2009) Tape-Arabidopsis sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods, 5, 16. Yan, J.Y., Li, C.X., Sun, L., Ren, J.Y., Li, G.X., Ding, Z.J. and Zheng, S.J. (2016) A WRKY transcription factor regulates Fe translocation under Fe deficiency in Arabidopsis. Plant Physiol. 171, 2017–2027. Yang, J.L., Chen, W.W., Chen, L.Q., Qin, C., Jin, C.W., Shi, Y.Z. and Zheng, S.J. (2013) The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytol. 197, 815-824. Yang, L., Ji, J., Wang, H., Harris-Shultz, K.R., Abd Allah, E.F., Luo, Y., Guan, Y. and Hu, X. (2016) Carbon monoxide interacts with auxin and nitric oxide to cope with iron deficiency in Arabidopsis. Front. Pant Sci. 7, 112. Yi, Y. and Guerinot, M.L. (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 10, 835-844. Yuan, Y.X., Wu, H.L., Wang, N., Li, J., Zhao, W.N., Du, J., Wang, D.W. and Ling, H.Q. (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 18, 385-397. Yuan, Y.X., Zhang, J., Wang, D.W. and Ling, H.Q. (2005) AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 15, 613-621. Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., Pallas, J.A. and Loake, G.J. (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 478, 264-268. Zhang, J., Liu, B., Li, M., Feng, D., Jin, H., Wang, P., Liu, J., Xiong, F., Wang, J. and Wang, H.B. (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell, 27, 787-805. Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W. and Chua, N.H. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protoc. 1, 641-646. Zhao, D.Y., Tian, Q.Y., Li, L.H. and Zhang, W.H. (2007) Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann. Bot. 100, 497-503. Zhu, X.F., Wang, B., Song, W.F., Zheng, S.J. and Shen, R.F. (2016) Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall fe in Arabidopsis. Plant Physiol. 170, 558-567.zh_TW
dc.description.abstractIron (Fe), one of the most fundamental elements for all living organisms, is required for various basic cellular functions such as respiration, photosynthesis and integral part of many enzymes. Iron deficiency anemia (IDA) has a substantial impact on human health. Nearly three billion people are affected by the IDA. To eliminate Fe-anemia from the society, crop improvement toward fortification of Fe has great significance. Enhancing Fe levels in plants is therefore useful, however, itself need an adequate knowledge on Fe homeostasis in plants. With this focus, by using chemical biology and genetic approaches, we identified new players that involve in regulation of responses to Fe deficiency in the model plant Arabidopsis thaliana. In chemical genetics approach, three small molecules (named as R3, R6 and R7) modulating Fe homeostasis were identified. The small molecule R7 was characterized in-depth whereas the effects of R3 and R6 were partially studied. Small-molecule treatment caused severe Fe-dependent chlorosis and attenuated the starvation response under Fe limited condition. By using the small molecule R7, we were able to dissect the molecular connection between nitric oxide and the Fe starvation response. Whereas R3 and R6 use helped to selectively inhibit the transcriptional network. In the EMS based mutant screening, we identified a mutant non-response to Fe-deficiency 1-1 (nrf1-1). Fe starvation response was compromised in nrf1-1. Mapping of nrf1-1 revealed a missense mutation in a methyl transferase gene, AT3G13440. Further analyses on mutant and complementation lines indicated that functional NRF1 is required for proper molecular and physiological responses to Fe-starvation. Taken together, the signaling that operate under Fe starvation has been elucidated in this research.en_US
dc.description.tableofcontentsAcknowledgments...............................................i Abstract.....................................................ii List of Tables................................................v List of Part 1. Iron homeostasis in plants: the regulation and molecular mechanism behind....................................1 Part 2. Chemical genetic screen reveals S-nitrosoglutathione works downstream of nitric oxide to mediate iron deficiency signaling.....................................................8 Abstract......................................................9 Introduction.................................................10 Material and methods.........................................13 Results......................................................16 Discussion...................................................21 Part 3. Small molecules dissect iron deficiency signaling pathways by selectively modulating transcriptional networks..40 Abstract.....................................................41 Introduction.................................................42 Material and methods.........................................44 Results......................................................46 Discussion...................................................49 Part 4. NON-RESPONSE TO FE-DEFICIENCY 1 (NRF1) is an essential regulator of iron homeostasis................................60 Abstract.....................................................61 Introduction.................................................62 Material and methods.........................................64 Results......................................................68 Discussion...................................................73 Part 5. Conclusion and future perspectives...................85 References...................................................87 Resume.......................................................99zh_TW
dc.subjectArabidopsis thalianaen_US
dc.subjectchemical biologyen_US
dc.subjectiron deficiency signalingen_US
dc.subjectnitric oxideen_US
dc.subjectselective translationen_US
dc.titleElucidating iron deficiency signaling in Arabidopsis thalianaen_US
dc.typethesis and dissertationen_US
item.fulltextwith fulltext-
item.openairetypethesis and dissertation-
Appears in Collections:生物科技學研究所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-8101041012-1.pdf1.93 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.