Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96408
標題: 高良薑素誘導鼻咽癌細胞p53非依賴性細胞週期S期停滯及細胞凋亡藉由抑制PI3K-AKT訊息路徑
Galangin induces p53-independent S-phase arrest and apoptosis in human nasopharyngeal carcinoma cells through inhibiting PI3K-AKT signaling pathway
作者: 李權峻
Chuan-Chun Lee
關鍵字: 凋亡;Apoptosis
引用: 1. Wei WI, Sham JS: Nasopharyngeal carcinoma. Lancet 365(9476):2041-2054, 2005. 2. Hsu C, Shen YC, Cheng CC, Hong RL, Chang CJ, Cheng AL: Difference in the incidence trend of nasopharyngeal and oropharyngeal carcinomas in Taiwan: implication from age-period-cohort analysis. Cancer Epidemiol Biomarkers Prev 15(5):856-861, 2006. 3. Yu MC, Yuan JM: Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 12(6):421-429, 2002. 4. Sham JS, Choy D, Choi PH: Nasopharyngeal carcinoma: the significance of neck node involvement in relation to the pattern of distant failure. Br J Radiol 63(746):108-113, 1990. 5. Garcia-Carracedo D, Villaronga MA, Alvarez-Teijeiro S, Hermida-Prado F, Santamaria I, Allonca E, Suarez-Fernandez L, Gonzalez MV, Balbin M, Astudillo A, Martinez-Camblor P, Su GH, Rodrigo JP, Garcia-Pedrero JM: Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget 7(20):29780-29793, 2016. 6. Chou J, Lin YC, Kim J, You L, Xu Z, He B, Jablons DM: Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck 30(7):946-963, 2008. 7. Engelman JA: Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9(8):550-562, 2009. 8. Brazil DP, Yang ZZ, Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233-242, 2004. 9. Cantley LC: The phosphoinositide 3-kinase pathway. Science 296(5573):1655-1657, 2002. 10. Clark AS, West K, Streicher S, Dennis PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1(9):707-717, 2002. 11. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M: Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21(8):1299-1303, 2002. 12. Worsham MJ, Pals G, Schouten JP, Van Spaendonk RM, Concus A, Carey TE, Benninger MS: Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 129(7):702-708, 2003. 13. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C: PI3K/Akt and apoptosis: size matters. Oncogene 22(56):8983-8998, 2003. 14. Arcaro A, Guerreiro AS: The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr Genomics 8(5):271-306, 2007. 15. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE: Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 275(15):10761-10766, 2000. 16. Majewski N, Nogueira V, Robey RB, Hay N: Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24(2):730-740, 2004. 17. Lin ML, Chen SS, Huang RY, Lu YC, Liao YR, Reddy MV, Lee CC, Wu TS: Suppression of PI3K/Akt signaling by synthetic bichalcone analog TSWU-CD4 induces ER stress- and Bax/Bak-mediated apoptosis of cancer cells. Apoptosis 19(11):1637-1653, 2014. 18. Cory S, Huang DC, Adams JM: The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590-8607, 2003. 19. Cullen SP, Martin SJ: Caspase activation pathways: some recent progress. Cell Death Differ 16(7):935-938, 2009. 20. Zilfou JT, Lowe SW: Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883, 2009. 21. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3(11):973-982, 2001. 22. Higashitsuji H, Higashitsuji H, Masuda T, Liu Y, Itoh K, Fujita J: Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem 282(18):13716-13725, 2007. 23. Abraham AG, O'Neill E: PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 42(4):798-803, 2014. 24. Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 20(7):898-909, 2013. 25. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH: Mutant p53 drives invasion by promoting integrin recycling. Cell 139(7):1327-1341, 2009. 26. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N: Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14(6):458-470, 2008. 27. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, Nie C, Wei Y: Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis 6:e1919, 2015. 28. Zhang L, Wang H, Li W, Zhong J, Yu R, Huang X, Wang H, Tan Z, Wang J, Zhang Y: Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis. Oncotarget 8(2):3289-3303, 2017. 29. Allen JE, Krigsfeld G, Mayes PA, Patel L, Dicker DT, Patel AS, Dolloff NG, Messaris E, Scata KA, Wang W, Zhou JY, Wu GS, El-Deiry WS: Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 5(171):171ra117, 2013. 30. Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DM, Banerjee S, Das K, Sa G, Das T: Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 31(2):259-268, 2010. 31. Chang GC, Hsu SL, Tsai JR, Wu WJ, Chen CY, Sheu GT: Extracellular signal-regulated kinase activation and Bcl-2 downregulation mediate apoptosis after gemcitabine treatment partly via a p53-independent pathway. Eur J Pharmacol 502(3):169-183, 2004. 32. Zhang YX, Liu XM, Wang J, Li J, Liu Y, Zhang H, Yu XW, Wei N: Inhibition of AKT/FoxO3a signaling induced PUMA expression in response to p53-independent cytotoxic effects of H1: A derivative of tetrandrine. Cancer Biol Ther 16(6):965-975, 2015. 33. Srivastava P, Yadav N, Lella R, Schneider A, Jones A, Marlowe T, Lovett G, O'Loughlin K, Minderman H, Gogada R, Chandra D: Neem oil limonoids induces p53-independent apoptosis and autophagy. Carcinogenesis 33(11):2199-2207, 2012. 34. Nakagawa Y, Takahashi A, Kajihara A, Yamakawa N, Imai Y, Ota I, Okamoto N, Mori E, Noda T, Furusawa Y, Kirita T, Ohnishi T: Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation. Biochem Biophys Res Commun 423(4):654-660, 2012. 35. Gogada R, Prabhu V, Amadori M, Scott R, Hashmi S, Chandra D: Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated Bax protein oligomerization on mitochondria to initiate cytochrome c release and caspase activation. J Biol Chem 286(33):28749-28760, 2011. 36. Yamakawa N, Takahashi A, Mori E, Imai Y, Furusawa Y, Ohnishi K, Kirita T, Ohnishi T: High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation. Cancer Sci 99(7):1455-1460, 2008. 37. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, Parenti AR, Rosato A, Bicciato S, Balmain A, Piccolo S: A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137(1):87-98, 2009. 38. Sauer L, Gitenay D, Vo C, Baron VT: Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells. Oncogene 29(18):2628-2637, 2010. 39. Wang W, Cheng B, Miao L, Mei Y, Wu M: Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis 4:e574, 2013. 40. Grugan KD, Vega ME, Wong GS, Diehl JA, Bass AJ, Wong KK, Nakagawa H, Rustgi AK: A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion. Cancer Biol Ther 14(9):853-859, 2013. 41. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, Nixon C, Karim SA, Caswell PT, Noll JE, Coffill CR, Lane DP, Sansom OJ, Neilsen PM, Norman JC, Vousden KH: Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32(10):1252-1265, 2013. 42. Oren M, Rotter V: Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2(2):a001107, 2010. 43. Zhu L, Luo Q, Bi J, Ding J, Ge S, Chen F: Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo. Chem Biol Interact 224:149-156, 2014. 44. Su L, Chen X, Wu J, Lin B, Zhang H, Lan L, Luo H: Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress. Food Chem Toxicol 62:810-816, 2013. 45. Zhang W, Lan Y, Huang Q, Hua Z: Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK. Cytotechnology 65(3):447-455, 2013. 46. Murray TJ, Yang X, Sherr DH: Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A. Breast Cancer Res 8(2):R17, 2006. 47. Zhang HT, Wu J, Wen M, Su LJ, Luo H: Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway. J Asian Nat Prod Res 14(7):626-633, 2012. 48. Ha TK, Kim ME, Yoon JH, Bae SJ, Yeom J, Lee JS: Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp Biol Med (Maywood) 238(9):1047-1054, 2013. 49. Zhang H, Li N, Wu J, Su L, Chen X, Lin B, Luo H: Galangin inhibits proliferation of HepG2 cells by activating AMPK via increasing the AMP/TAN ratio in a LKB1-independent manner. Eur J Pharmacol 718(1-3):235-244, 2013. 50. Ogunbayo OA, Michelangeli F: Related flavonoids cause cooperative inhibition of the sarcoplasmic reticulum Ca(2)(+) ATPase by multimode mechanisms. FEBS J 281(3):766-777, 2014. 51. Wang Y, Wu J, Lin B, Li X, Zhang H, Ding H, Chen X, Lan L, Luo H: Galangin suppresses HepG2 cell proliferation by activating the TGF-beta receptor/Smad pathway. Toxicology 326:9-17, 2014. 52. Zhang HT, Luo H, Wu J, Lan LB, Fan DH, Zhu KD, Chen XY, Wen M, Liu HM: Galangin induces apoptosis of hepatocellular carcinoma cells via the mitochondrial pathway. World J Gastroenterol 16(27):3377-3384, 2010. 53. Kim DA, Jeon YK, Nam MJ: Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food Chem Toxicol 50(3-4):684-688, 2012. 54. Tolomeo M, Grimaudo S, Di Cristina A, Pipitone RM, Dusonchet L, Meli M, Crosta L, Gebbia N, Invidiata FP, Titone L, Simoni D: Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett 265(2):289-297, 2008. 55. Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, Chuang SM: Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 62(6):713-724, 1990. 56. Lin ML, Chen SS: Activation of Casein Kinase II by Gallic Acid Induces BIK-BAX/BAK-Mediated ER Ca(++)-ROS-Dependent Apoptosis of Human Oral Cancer Cells. Front Physiol 8:761, 2017. 57. Lu YC, Lin ML, Su HL, Chen SS: ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells. Anticancer Res 36(2):697-705, 2016. 58. Lin ML, Chen SS, Ng SH: CHM-1 Suppresses Formation of Cell Surface-associated GRP78-p85alpha Complexes, Inhibiting PI3K-AKT Signaling and Inducing Apoptosis of Human Nasopharyngeal Carcinoma Cells. Anticancer Res 35(10):5359-5368, 2015. 59. Lin ML, Lu YC, Su HL, Lin HT, Lee CC, Kang SE, Lai TC, Chung JG, Chen SS: Destabilization of CARP mRNAs by aloe-emodin contributes to caspase-8-mediated p53-independent apoptosis of human carcinoma cells. J Cell Biochem 112(4):1176-1191, 2011. 60. Whitfield ML, Zheng LX, Baldwin A, Ohta T, Hurt MM, Marzluff WF: Stem-loop binding protein, the protein that binds the 3' end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol 20(12):4188-4198, 2000. 61. Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489-501, 2002. 62. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL: Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909-919, 2000. 63. Walker EH, Perisic O, Ried C, Stephens L, Williams RL: Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402(6759):313-320, 1999. 64. Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR: Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 22(3):965-977, 2002. 65. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, et al.: Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65(1):91-104, 1991. 66. Shepherd PR, Withers DJ, Siddle K: Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333 ( Pt 3):471-490, 1998. 67. Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC: The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170(3):455-464, 2005. 68. Wan X, Helman LJ: Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 22(50):8205-8211, 2003. 69. Toretsky JA, Helman LJ: Involvement of IGF-II in human cancer. J Endocrinol 149(3):367-372, 1996. 70. Jones SM, Klinghoffer R, Prestwich GD, Toker A, Kazlauskas A: PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1. Curr Biol 9(10):512-521, 1999. 71. Nagappan A, Lee WS, Yun JW, Lu JN, Chang SH, Jeong JH, Kim GS, Jung JM, Hong SC: Tetraarsenic hexoxide induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt suppression and p38 MAPK activation in SW620 human colon cancer cells. PLoS One 12(3):e0174591, 2017. 72. Luo M, Liu Q, He M, Yu Z, Pi R, Li M, Yang X, Wang S, Liu A: Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells. J Cell Mol Med 21(1):46-57, 2017. 73. Zhu XF, Liu ZC, Xie BF, Feng GK, Zeng YX: Ceramide induces cell cycle arrest and upregulates p27kip in nasopharyngeal carcinoma cells. Cancer Lett 193(2):149-154, 2003. 74. Takahashi P, Polson A, Reisman D: Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle. Apoptosis 16(9):950-958, 2011. 75. Bacanli M, Basaran AA, Basaran N: The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells. Drug Chem Toxicol 40(3):256-262, 2017. 76. Dantzer F, Ame JC, Schreiber V, Nakamura J, Menissier-de Murcia J, de Murcia G: Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol 409:493-510, 2006. 77. Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K: Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35(6):2093-2104, 2007.
摘要: 
高良薑素 (galangin: 3,5,7-trihydroxyflavone) 抗癌活性在許多不同種類的癌症皆被證明,然而高良薑素對人類鼻咽癌細胞的影響在目前仍是未被探討的。於研究中發現高良薑素誘導鼻咽癌細胞凋亡的特徵包括: 細胞核濃縮,活化caspae-3及poly ADP-ribose polymerase (PARP) 蛋白質,DNA 斷裂,並誘導鼻咽癌細胞的細胞週期停滯於S 期。在PI3K抑制劑 (LY294002),AKT抑制劑 (MK-2206),細胞內大量表現野生型 p85 alpha 或突變型p85 alpha (缺乏與p110 alpha 結合能力) 基因實驗中,證明高良薑素藉由抑制PI3K-AKT訊息路徑來誘導鼻咽癌細胞凋亡及細胞週期停滯於S期。利用短片段髮夾結構RNA p53 shRNA 抑制鼻咽癌細胞內p53 蛋白質的表現,發現不影響高良薑素的抗癌活性。在ATP競爭試驗及薄層層析法分離試驗中證明高良薑素可藉由與ATP競爭p110 alpha 上的ATP結合位來抑制PI3K活性。由此證明高良薑素也許能當作一種ATP競爭的抑制劑,藉由與ATP競爭PI3K p110 alpha 上的ATP結合位來抑制PI3K-AKT訊息路徑,進而誘導與p53蛋白質表現無關的鼻咽癌細胞凋亡及細胞週期停滯於S期。

Anti-cancer activity of 3,5,7-trihydroxyflavone (galangin) has been documented in a variety of cancer types; however, its effect on human nasopharyngeal carcinoma (NPC) cells remains undetermined. Herein, we show that galangin induces apoptosis of NPC cells, characterized by nuclear condensation, cleavage of pro-caspase-3 and poly ADP-ribose polymerase (PARP), and DNA fragmentation. Treatment with galangin also resulted in an S-phase cell cycle accumulation. Using the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, protein kinase B (AKT) inhibitor MK-2206, and ectopic expression of wild type p85 alpha or p85 alpha mutant lacking p110 alpha-binding ability, we show that galangin induces apoptosis and S-phase arrest by attenuating the PI3K-AKT signaling pathway. Short hairpin RNA-mediated silencing of p53 does not block the anti-cancer activity of galangin. ATP-competitive inhibition assay and thin-layer chromatography assay show that galangin can inhibit PI3 kinase activity by competing ATP binding site of p110 alpha. Collectively, galangin might be an ATP-competitive inhibitor that induces apoptosis and S-phase arrest of NPC cells by attenuating the PI3K-AKT signaling pathway in a p53-independent manner.
URI: http://hdl.handle.net/11455/96408
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-09起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8099041007-1.pdf6.25 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.