Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96412
標題: 以結構為基礎探討由棘黴素辨識含胸腺嘧啶錯配之序列
Structural basis of the specific binding of echinomycin to DNA sequence with T:T mismatch
作者: 高雅芬
Ya-Fen Kao
關鍵字: 棘黴素;T:T 錯配鹼基;DNA 解旋;Echinomycin;T:T mismatch;DNA unwinding
引用: 1. Modrich, P. (1987) DNA mismatch correction, Annual review of biochemistry 56, 435-466. 2. Goodman, M. F., Creighton, S., Bloom, L. B., and Petruska, J. (1993) Biochemical basis of DNA replication fidelity, Critical reviews in biochemistry and molecular biology 28, 83-126. 3. Bhattacharyya, A., and Lilley, D. M. (1989) Single base mismatches in DNA. Long- and short-range structure probed by analysis of axis trajectory and local chemical reactivity, Journal of molecular biology 209, 583-597. 4. Kunz, C., Saito, Y., and Schar, P. (2009) DNA Repair in mammalian cells: Mismatched repair: variations on a theme, Cellular and molecular life sciences : CMLS 66, 1021-1038. 5. Modrich, P. (1991) Mechanisms and biological effects of mismatch repair, Annual review of genetics 25, 229-253. 6. Modrich, P. (2006) Mechanisms in eukaryotic mismatch repair, The Journal of biological chemistry 281, 30305-30309. 7. Kunkel, T. A., and Erie, D. A. (2005) DNA mismatch repair, Annual review of biochemistry 74, 681-710. 8. Li, G. M. (2008) Mechanisms and functions of DNA mismatch repair, Cell research 18, 85-98. 9. Johnson, K. A. (1993) Conformational coupling in DNA polymerase fidelity, Annual review of biochemistry 62, 685-713. 10. Fersht, A. R., Knill-Jones, J. W., and Tsui, W. C. (1982) Kinetic basis of spontaneous mutation. Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli, Journal of molecular biology 156, 37-51. 11. Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Canizares, J., Koutnikova, H., Bidichandani, S. I., Gellera, C., Brice, A., Trouillas, P., De Michele, G., Filla, A., De Frutos, R., Palau, F., Patel, P. I., Di Donato, S., Mandel, J. L., Cocozza, S., Koenig, M., and Pandolfo, M. (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science 271, 1423-1427. 12. Yoshida, K., Asakawa, M., Suzuki-Kouyama, E., Tabata, K., Shintaku, M., Ikeda, S., and Oyanagi, K. (2014) Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31, Neuropathology : official journal of the Japanese Society of Neuropathology 34, 261-267. 13. Sato, N., Amino, T., Kobayashi, K., Asakawa, S., Ishiguro, T., Tsunemi, T., Takahashi, M., Matsuura, T., Flanigan, K. M., Iwasaki, S., Ishino, F., Saito, Y., Murayama, S., Yoshida, M., Hashizume, Y., Takahashi, Y., Tsuji, S., Shimizu, N., Toda, T., Ishikawa, K., and Mizusawa, H. (2009) Spinocerebellar ataxia type 31 is associated with 'inserted' penta-nucleotide repeats containing (TGGAA)n, American journal of human genetics 85, 544-557. 14. Amino, T., Ishikawa, K., Toru, S., Ishiguro, T., Sato, N., Tsunemi, T., Murata, M., Kobayashi, K., Inazawa, J., Toda, T., and Mizusawa, H. (2007) Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia, Journal of human genetics 52, 643-649. 15. Lindahl, T. (1982) DNA repair enzymes, Annual review of biochemistry 51, 61-87. 16. Wang, R. Y., Kuo, K. C., Gehrke, C. W., Huang, L. H., and Ehrlich, M. (1982) Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA, Biochimica et biophysica acta 697, 371-377. 17. Modrich, P., and Lahue, R. (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology, Annual review of biochemistry 65, 101-133. 18. Borden, K. L., Jenkins, T. C., Skelly, J. V., Brown, T., and Lane, A. N. (1992) Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR, Biochemistry 31, 5411-5422. 19. Ebel, S., Lane, A. N., and Brown, T. (1992) Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA, Biochemistry 31, 12083-12086. 20. Allawi, H. T., and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA, Biochemistry 36, 10581-10594. 21. Allawi, H. T., and SantaLucia, J., Jr. (1998) Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNA, Biochemistry 37, 2170-2179. 22. Allawi, H. T., and SantaLucia, J., Jr. (1998) NMR solution structure of a DNA dodecamer containing single G.T mismatches, Nucleic acids research 26, 4925-4934. 23. Peyret, N., Seneviratne, P. A., Allawi, H. T., and SantaLucia, J., Jr. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches, Biochemistry 38, 3468-3477. 24. Holmes, S. E., O'Hearn, E. E., McInnis, M. G., Gorelick-Feldman, D. A., Kleiderlein, J. J., Callahan, C., Kwak, N. G., Ingersoll-Ashworth, R. G., Sherr, M., Sumner, A. J., Sharp, A. H., Ananth, U., Seltzer, W. K., Boss, M. A., Vieria-Saecker, A. M., Epplen, J. T., Riess, O., Ross, C. A., and Margolis, R. L. (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12, Nature genetics 23, 391-392. 25. Khan, N., Kolimi, N., and Rathinavelan, T. (2015) Twisting right to left: A...A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation, PLoS computational biology 11, e1004162. 26. Lee, C., Cheong, H.-K., Cho, J.-H., and Cheong, C. (2010) AA mismatched DNAs with a single base difference exhibit a large structural change and a propensity for the parallel-stranded conformation, Journal of Analytical Science & Technology 1, 37-48. 27. Boulard, Y., Cognet, J. A., Gabarro-Arpa, J., Le Bret, M., Carbonnaux, C., and Fazakerley, G. V. (1995) Solution structure of an oncogenic DNA duplex, the K-ras gene and the sequence containing a central C.A or A.G mismatch as a function of pH: nuclear magnetic resonance and molecular dynamics studies, Journal of molecular biology 246, 194-208. 28. Boulard, Y., Cognet, J. A., Gabarro-Arpa, J., Le Bret, M., Sowers, L. C., and Fazakerley, G. V. (1992) The pH dependent configurations of the C.A mispair in DNA, Nucleic acids research 20, 1933-1941. 29. Allawi, H. T., and SantaLucia, J., Jr. (1998) Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects, Biochemistry 37, 9435-9444. 30. Boulard, Y., Cognet, J. A., and Fazakerley, G. V. (1997) Solution structure as a function of pH of two central mismatches, C . T and C . C, in the 29 to 39 K-ras gene sequence, by nuclear magnetic resonance and molecular dynamics, Journal of molecular biology 268, 331-347. 31. Brovarets, O. O., and Hovorun, D. M. (2013) Atomistic nature of the DPT tautomerisation of the biologically important C.C* DNA base mispair containing amino and imino tautomers of cytosine: a QM and QTAIM approach, Physical chemistry chemical physics : PCCP 15, 20091-20104. 32. Allawi, H. T., and SantaLucia, J., Jr. (1998) Thermodynamics of internal C.T mismatches in DNA, Nucleic acids research 26, 2694-2701. 33. Vanhommerig, S. A., van Genderen, M. H., and Buck, H. M. (1991) A stable antiparallel cytosine-thymine base pair occurring only at the end of a duplex, Biopolymers 31, 1087-1094. 34. Brovarets, O. O., and Hovorun, D. M. (2013) Atomistic understanding of the C.T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches, Journal of computational chemistry 34, 2577-2590. 35. Tikhomirova, A., Beletskaya, I. V., and Chalikian, T. V. (2006) Stability of DNA duplexes containing GG, CC, AA, and TT mismatches, Biochemistry 45, 10563-10571. 36. Cornelis, A. G., Haasnoot, J. H., den Hartog, J. F., de Rooij, M., van Boom, J. H., and Cornelis, A. (1979) Local destabilisation of a DNA double helix by a T--T wobble pair, Nature 281, 235-236. 37. Renkonen, E., Zhang, Y., Lohi, H., Salovaara, R., Abdel-Rahman, W. M., Nilbert, M., Aittomaki, K., Jarvinen, H. J., Mecklin, J. P., Lindblom, A., and Peltomaki, P. (2003) Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 21, 3629-3637. 38. Kolodner, R. D. (1995) Mismatch repair: mechanisms and relationship to cancer susceptibility, Trends in biochemical sciences 20, 397-401. 39. Dohet, C., Wagner, R., and Radman, M. (1985) Repair of defined single base-pair mismatches in Escherichia coli, Proceedings of the National Academy of Sciences of the United States of America 82, 503-505. 40. Kramer, B., Kramer, W., and Fritz, H. J. (1984) Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli, Cell 38, 879-887. 41. Fazakerley, G. V., Quignard, E., Woisard, A., Guschlbauer, W., van der Marel, G. A., van Boom, J. H., Jones, M., and Radman, M. (1986) Structures of mismatched base pairs in DNA and their recognition by the Escherichia coli mismatch repair system, The EMBO journal 5, 3697-3703. 42. Bahr, M., Gabelica, V., Granzhan, A., Weinhold, E., and Teulade-Fichou, M. P. (2008) Recognition of homopyrimidine mismatches by distance-constrained macrocyclic bisintercalators, Nucleic acids symposium series, 109-110. 43. Hurley, L. H. (2002) DNA and its associated processes as targets for cancer therapy, Nature reviews. Cancer 2, 188-200. 44. Reha, D., Kabelac, M., Ryjacek, F., Sponer, J., Sponer, J. E., Elstner, M., Suhai, S., and Hobza, P. (2002) Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4',6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study, Journal of the American Chemical Society 124, 3366-3376. 45. Lebwohl, D., and Canetta, R. (1998) Clinical development of platinum complexes in cancer therapy: an historical perspective and an update, European journal of cancer 34, 1522-1534. 46. Lokich, J., and Anderson, N. (1998) Carboplatin versus cisplatin in solid tumors: an analysis of the literature, Annals of oncology : official journal of the European Society for Medical Oncology 9, 13-21. 47. Reddy, B. S., Sharma, S. K., and Lown, J. W. (2001) Recent developments in sequence selective minor groove DNA effectors, Current medicinal chemistry 8, 475-508. 48. Cusumano, M., Di Pietro, M. L., Giannetto, A., and Vainiglia, P. A. (2005) The intercalation to DNA of bipyridyl complexes of platinum(II) with thioureas, Journal of inorganic biochemistry 99, 560-565. 49. Tsuruga, M., Dang, Y., Shiono, Y., Oka, S., and Yamazaki, Y. (2003) Differential effects of vitamin E and three hydrophilic antioxidants on the actinomycin D-induced and colcemid-accelerated apoptosis in human leukemia CMK-7 cell line, Molecular and cellular biochemistry 250, 131-137. 50. Dewitte-Orr, S. J., Zorzitto, J. R., Sutton, L. P., and Bols, N. C. (2005) Preferential induction of apoptosis in the rainbow trout macrophage cell line, RTS11, by actinomycin D, cycloheximide and double stranded RNA, Fish & shellfish immunology 18, 279-295. 51. Coll, M., Frederick, C. A., Wang, A. H., and Rich, A. (1987) A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin, Proceedings of the National Academy of Sciences of the United States of America 84, 8385-8389. 52. Van Dyke, M. W., and Dervan, P. B. (1983) Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II), Biochemistry 22, 2373-2377. 53. Gao, X. L., Mirau, P., and Patel, D. J. (1992) Structure refinement of the chromomycin dimer-DNA oligomer complex in solution, Journal of molecular biology 223, 259-279. 54. Absalon, M. J., Kozarich, J. W., and Stubbe, J. (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 1. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides, Biochemistry 34, 2065-2075. 55. Absalon, M. J., Wu, W., Kozarich, J. W., and Stubbe, J. (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics, Biochemistry 34, 2076-2086. 56. Nguyen, T. V., and Murray, V. (2012) Human telomeric DNA sequences are a major target for the antitumour drug bleomycin, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 17, 1-9. 57. Nguyen, H. T., and Murray, V. (2012) The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 17, 1209-1215. 58. Sischka, A., Toensing, K., Eckel, R., Wilking, S. D., Sewald, N., Ros, R., and Anselmetti, D. (2005) Molecular mechanisms and kinetics between DNA and DNA binding ligands, Biophysical journal 88, 404-411. 59. McMurray, C. T., Small, E. W., and van Holde, K. E. (1991) Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes, Biochemistry 30, 5644-5652. 60. Graves, D. E., and Velea, L. M. (2000) Intercalative binding of small molecules to nucleic acids, Current Organic Chemistry 4, 915-929. 61. Sobell, H. M., and Jain, S. C. (1972) Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications, Journal of molecular biology 68, 21-34. 62. Kamitori, S., and Takusagawa, F. (1992) Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D, Journal of molecular biology 225, 445-456. 63. Aivasashvilli, V. A., and Beabealashvilli, R. S. (1983) Sequence-specific inhibition of RNA elongation by actinomycin D, FEBS letters 160, 124-128. 64. Hou, M. H., Robinson, H., Gao, Y. G., and Wang, A. H. (2002) Crystal structure of actinomycin D bound to the CTG triplet repeat sequences linked to neurological diseases, Nucleic acids research 30, 4910-4917. 65. Sayers, E. W., and Waring, M. J. (1993) Footprinting titration studies on the binding of echinomycin to DNA incapable of forming Hoogsteen base pairs, Biochemistry 32, 9094-9107. 66. Waring, M. J., and Wakelin, L. P. (1974) Echinomycin: a bifunctional intercalating antibiotic, Nature 252, 653-657. 67. Quigley, G. J., Wang, A. H., Ughetto, G., van der Marel, G., van Boom, J. H., and Rich, A. (1980) Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG), Proceedings of the National Academy of Sciences of the United States of America 77, 7204-7208. 68. Bailly, C., Henichart, J. P., Colson, P., and Houssier, C. (1992) Drug-DNA sequence-dependent interactions analysed by electric linear dichroism, Journal of molecular recognition : JMR 5, 155-171. 69. Bailly, C., OhUigin, C., Rivalle, C., Bisagni, E., Henichart, J. P., and Waring, M. J. (1990) Sequence-selective binding of an ellipticine derivative to DNA, Nucleic acids research 18, 6283-6291. 70. Gurova, K. (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents, Future oncology 5, 1685-1704. 71. Pindur, U., Jansen, M., and Lemster, T. (2005) Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology, Current medicinal chemistry 12, 2805-2847. 72. Bailly, C., and Waring, M. J. (1995) Comparison of different footprinting methodologies for detecting binding sites for a small ligand on DNA, Journal of biomolecular structure & dynamics 12, 869-898. 73. Wakelin, S. P., and Waring, M. J. (1976) The binding of echinomycin to deoxyribonucleic acid, The Biochemical journal 157, 721-740. 74. Dell, A., Williams, D. H., Morris, H. R., Smith, G. A., Feeney, J., and Roberts, G. C. (1975) Structure revision of the antibiotic echinomycin, Journal of the American Chemical Society 97, 2497-2502. 75. Waring, M. J. (1981) DNA modification and cancer, Annual review of biochemistry 50, 159-192. 76. Waring, M. J. (1993) Echinomycin and Related Quinoxaline, Molecular Aspects of Anticancer Drug DNA Interaction 1, 213. 77. May, L. G., Madine, M. A., and Waring, M. J. (2004) Echinomycin inhibits chromosomal DNA replication and embryonic development in vertebrates, Nucleic acids research 32, 65-72. 78. Gilbert, D. E., and Feigon, J. (1992) Proton NMR study of the [d(ACGTATACGT)]2-2echinomycin complex: conformational changes between echinomycin binding sites, Nucleic acids research 20, 2411-2420. 79. Gilbert, D. E., and Feigon, J. (1991) The DNA sequence at echinomycin binding sites determines the structural changes induced by drug binding: NMR studies of echinomycin binding to [d(ACGTACGT)]2 and [d(TCGATCGA)]2, Biochemistry 30, 2483-2494. 80. Leslie, K. D., and Fox, K. R. (2002) Interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments containing isolated ligand binding sites, Biochemistry 41, 3484-3497. 81. Ward, D. C., Reich, E., and Goldberg, I. H. (1965) Base specificity in the interaction of polynucleotides with antibiotic drugs, Science 149, 1259-1263. 82. Sato, K., Shiratori, O., and Katagiri, K. (1967) The mode of action of quinoxaline antibiotics. Interaction of quinomycin A with deoxyribonucleic acid, The Journal of antibiotics 20, 270-276. 83. Gause, G. G., Jr., Loshkareva, N. P., and Zbarsky, I. B. (1968) Effect of olivomycin and echinomycin on initiation and growth of RNA chains catalyzed by RNA polymerase, Biochimica et biophysica acta 166, 752-754. 84. Van Dyke, M. M., and Dervan, P. B. (1984) Echinomycin binding sites on DNA, Science 225, 1122-1127. 85. Low, C. M., Drew, H. R., and Waring, M. J. (1984) Sequence-specific binding of echinomycin to DNA: evidence for conformational changes affecting flanking sequences, Nucleic acids research 12, 4865-4879. 86. Gallego, J., Luque, F. J., Orozco, M., Burgos, C., Alvarez-Builla, J., Rodrigo, M. M., and Gago, F. (1994) DNA sequence-specific reading by echinomycin: role of hydrogen bonding and stacking interactions, Journal of medicinal chemistry 37, 1602-1609. 87. Ughetto, G., Wang, A. H., Quigley, G. J., van der Marel, G. A., van Boom, J. H., and Rich, A. (1985) A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment, Nucleic acids research 13, 2305-2323. 88. Kong, D., Park, E. J., Stephen, A. G., Calvani, M., Cardellina, J. H., Monks, A., Fisher, R. J., Shoemaker, R. H., and Melillo, G. (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, Cancer research 65, 9047-9055. 89. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy, Nature reviews. Cancer 3, 721-732. 90. Chilkoti, A., Tan, P. H., and Stayton, P. S. (1995) Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120, Proceedings of the National Academy of Sciences of the United States of America 92, 1754-1758. 91. Matthews, B. W. (1968) Solvent content of protein crystals, Journal of molecular biology 33, 491-497. 92. Brunger, A. T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature 355, 472-475. 93. Rackham, B. (2014) Single molecule studies of ligand-DNA interactions using atomic force microscopy, University of East Anglia. 94. Hou, M. H., Lu, W. J., Huang, C. Y., Fan, R. J., and Yuann, J. M. (2009) Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt(II): implications for anticancer therapy, Biochemistry 48, 4691-4698. 95. Cuesta-Seijo, J. A., and Sheldrick, G. M. (2005) Structures of complexes between echinomycin and duplex DNA, Acta crystallographica. Section D, Biological crystallography 61, 442-448. 96. Cuesta-Seijo, J. A., Weiss, M. S., and Sheldrick, G. M. (2006) Serendipitous SAD phasing of an echinomycin-(ACGTACGT)2 bisintercalation complex, Acta crystallographica. Section D, Biological crystallography 62, 417-424. 97. Pfoh, R., Cuesta-Seijo, J. A., and Sheldrick, G. M. (2009) Interaction of an echinomycin-DNA complex with manganese ions, Acta crystallographica. Section F, Structural biology and crystallization communications 65, 660-664. 98. Olson, W. K., Bansal, M., Burley, S. K., Dickerson, R. E., Gerstein, M., Harvey, S. C., Heinemann, U., Lu, X. J., Neidle, S., Shakked, Z., Sklenar, H., Suzuki, M., Tung, C. S., Westhof, E., Wolberger, C., and Berman, H. M. (2001) A standard reference frame for the description of nucleic acid base-pair geometry, Journal of molecular biology 313, 229-237. 99. Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R. E. (1981) Structure of a B-DNA dodecamer: conformation and dynamics, Proceedings of the National Academy of Sciences of the United States of America 78, 2179-2183. 100. Minasov, G., Tereshko, V., and Egli, M. (1999) Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing, Journal of molecular biology 291, 83-99. 101. Gao, Y. G., Sriram, M., and Wang, A. H. (1993) Crystallographic studies of metal ion-DNA interactions: different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex, Nucleic acids research 21, 4093-4101. 102. Abrescia, N. A., Huynh-Dinh, T., and Subirana, J. A. (2002) Nickel-guanine interactions in DNA: crystal structure of nickel-d[CGTGTACACG]2, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 7, 195-199. 103. Labiuk, S. L., Delbaere, L. T., and Lee, J. S. (2003) Cobalt(II), nickel(II) and zinc(II) do not bind to intra-helical N(7) guanine positions in the B-form crystal structure of d(GGCGCC), Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 8, 715-720. 104. Ong, M. S., Richmond, T. J., and Davey, C. A. (2007) DNA stretching and extreme kinking in the nucleosome core, Journal of molecular biology 368, 1067-1074. 105. Wei, D., Wilson, W. D., and Neidle, S. (2013) Small-molecule binding to the DNA minor groove is mediated by a conserved water cluster, Journal of the American Chemical Society 135, 1369-1377. 106. Tseng, Y. D., Ge, H., Wang, X., Edwardson, J. M., Waring, M. J., Fitzgerald, W. J., and Henderson, R. M. (2005) Atomic force microscopy study of the structural effects induced by echinomycin binding to DNA, Journal of molecular biology 345, 745-758. 107. Park, J. Y., and Choi, B. S. (1995) NMR investigation of echinomycin binding to d(ACGTTAACGT)2: Hoogsteen versus Watson-Crick A.T base pairing between echinomycin binding sites, Journal of biochemistry 118, 989-995. 108. Addess, K. J., and Feigon, J. (1994) NMR investigation of Hoogsteen base pairing in quinoxaline antibiotic--DNA complexes: comparison of 2:1 echinomycin, triostin A and [N-MeCys3,N-MeCys7] TANDEM complexes with DNA oligonucleotides, Nucleic acids research 22, 5484-5491. 109. Kouchakdjian, M., Li, B. F., Swann, P. F., and Patel, D. J. (1988) Pyrimidine.pyrimidine base-pair mismatches in DNA. A nuclear magnetic resonance study of T.T pairing at neutral pH and C.C pairing at acidic pH in dodecanucleotide duplexes, Journal of molecular biology 202, 139-155. 110. Gervais, V., Cognet, J. A., Le Bret, M., Sowers, L. C., and Fazakerley, G. V. (1995) Solution structure of two mismatches A.A and T.T in the K-ras gene context by nuclear magnetic resonance and molecular dynamics, European journal of biochemistry 228, 279-290. 111. Chi, L. M., and Lam, S. L. (2005) Structural roles of CTG repeats in slippage expansion during DNA replication, Nucleic acids research 33, 1604-1617. 112. Seznec, H., Agbulut, O., Sergeant, N., Savouret, C., Ghestem, A., Tabti, N., Willer, J. C., Ourth, L., Duros, C., Brisson, E., Fouquet, C., Butler-Browne, G., Delacourte, A., Junien, C., and Gourdon, G. (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities, Human molecular genetics 10, 2717-2726. 113. Gusella, J. F., and MacDonald, M. E. (1995) Huntington's disease, Seminars in cell biology 6, 21-28. 114. Sermon, K., Seneca, S., De Rycke, M., Goossens, V., Van de Velde, H., De Vos, A., Platteau, P., Lissens, W., Van Steirteghem, A., and Liebaers, I. (2001) PGD in the lab for triplet repeat diseases - myotonic dystrophy, Huntington's disease and Fragile-X syndrome, Molecular and cellular endocrinology 183 Suppl 1, S77-85. 115. Paulson, H. L., and Fischbeck, K. H. (1996) Trinucleotide repeats in neurogenetic disorders, Annual review of neuroscience 19, 79-107. 116. Pluciennik, A., Iyer, R. R., Parniewski, P., and Wells, R. D. (2000) Tandem duplication. A novel type of triplet repeat instability, The Journal of biological chemistry 275, 28386-28397. 117. McMurray, C. T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease, Proceedings of the National Academy of Sciences of the United States of America 96, 1823-1825. 118. Petruska, J., Arnheim, N., and Goodman, M. F. (1996) Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases, Nucleic acids research 24, 1992-1998. 119. Malumbres, M., and Barbacid, M. (2003) RAS oncogenes: the first 30 years, Nature reviews. Cancer 3, 459-465. 120. Downward, J. (2003) Targeting RAS signalling pathways in cancer therapy, Nature reviews. Cancer 3, 11-22. 121. Haigis, K. M., Kendall, K. R., Wang, Y., Cheung, A., Haigis, M. C., Glickman, J. N., Niwa-Kawakita, M., Sweet-Cordero, A., Sebolt-Leopold, J., Shannon, K. M., Settleman, J., Giovannini, M., and Jacks, T. (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon, Nature genetics 40, 600-608. 122. Noonan, J. A. (1968) Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease, American journal of diseases of children 116, 373-380. 123. Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., van der Burgt, I., Musante, L., Kalscheuer, V., Wehner, L. E., Nguyen, H., West, B., Zhang, K. Y., Sistermans, E., Rauch, A., Niemeyer, C. M., Shannon, K., and Kratz, C. P. (2006) Germline KRAS mutations cause Noonan syndrome, Nature genetics 38, 331-336. 124. Niihori, T., Aoki, Y., Narumi, Y., Neri, G., Cave, H., Verloes, A., Okamoto, N., Hennekam, R. C., Gillessen-Kaesbach, G., Wieczorek, D., Kavamura, M. I., Kurosawa, K., Ohashi, H., Wilson, L., Heron, D., Bonneau, D., Corona, G., Kaname, T., Naritomi, K., Baumann, C., Matsumoto, N., Kato, K., Kure, S., and Matsubara, Y. (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome, Nature genetics 38, 294-296. 125. Neumann, T. E., Allanson, J., Kavamura, I., Kerr, B., Neri, G., Noonan, J., Cordeddu, V., Gibson, K., Tzschach, A., Kruger, G., Hoeltzenbein, M., Goecke, T. O., Kehl, H. G., Albrecht, B., Luczak, K., Sasiadek, M. M., Musante, L., Laurie, R., Peters, H., Tartaglia, M., Zenker, M., and Kalscheuer, V. (2009) Multiple giant cell lesions in patients with Noonan syndrome and cardio-facio-cutaneous syndrome, European journal of human genetics : EJHG 17, 420-425. 126. Liu, X., Jakubowski, M., and Hunt, J. L. (2011) KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis, American journal of clinical pathology 135, 245-252. 127. Russo, A., Bazan, V., Agnese, V., Rodolico, V., and Gebbia, N. (2005) Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies, Annals of oncology : official journal of the European Society for Medical Oncology 16 Suppl 4, iv44-49. 128. Suehiro, Y., Wong, C. W., Chirieac, L. R., Kondo, Y., Shen, L., Webb, C. R., Chan, Y. W., Chan, A. S., Chan, T. L., Wu, T. T., Rashid, A., Hamanaka, Y., Hinoda, Y., Shannon, R. L., Wang, X., Morris, J., Issa, J. P., Yuen, S. T., Leung, S. Y., and Hamilton, S. R. (2008) Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma, Clinical cancer research : an official journal of the American Association for Cancer Research 14, 2560-2569. 129. Yagil, G. (1991) Paranemic structures of DNA and their role in DNA unwinding, Critical reviews in biochemistry and molecular biology 26, 475-559. 130. Choudhury, J. R., and Bierbach, U. (2005) Characterization of the bisintercalative DNA binding mode of a bifunctional platinum-acridine agent, Nucleic acids research 33, 5622-5632. 131. Keck, M. V., and Lippard, S. J. (1992) Unwinding of supercoiled DNA by platinum-ethidium and related complexes, Journal of the American Chemical Society 114, 3386-3390.
摘要: 
In the process of cell division, the fidelity of the genetic information is ensured by proofreading of DNA polymerase and mismatch repair system. But there are still some mismatches occur. If the DNA repair system is disable to repair the mismatches, it will lead to the occurrence of genetic disease or cancer. It's very significant on human health. DNA intercalators have long been known as anticancer drugs, which have been well studied. The intercalators interfere with DNA replication or transcription resulted from intercalations of chomophores, thereby have the anticancer activity. According to previous studies, echinomycin is a bifunctional intercalating antitumor antibiotic which intercalates two quinoxaline rings into the bases of DNA duplex, and has a high binding affinity of DNA sequences rich in guanines and cytosines content. This study focuses on the DNA conformational changes and stability after binding of echinomycin to DNA with T:T mispair. We conducted a biophysical study to determine the effect of echinomycin binding to sequence having mispair. The stabilizing effects of Echi on DNA were characterized by UV meling. The result shows that echinomycin exhibits higher DNA-stablizing effect. The conformational changes were characterized using circular dichroism (CD) spectroscopy. We found the significant differences in the CD spectra after echinomycin bound to T:T mismatch sequence. It reveals that there is an obvious conformational effect of the complexes, and T:T mispair could form a more stable structure than echinomycin bound to other mispairs. Moreover, we solved the crystal structure of echinomycin bound to d(ACGTCG(BrdU))2. The current result shows that the DNA structure has conformational changes after binding of echinomycin to DNA. Because of the structural effects, it provides a favorable binding site for echinomycin. Afterwards we used surface plasmon resonance to analyze the kinetics, and calculate the binding affinities of echinomycin and different mismatched base pairs. Our result firmly establishes that echinomycin could elevate the stability of T:T mispair sequence. It also points out a useful direction for future new drugs design in the treatment of diseases related to T:T mispair.
URI: http://hdl.handle.net/11455/96412
Rights: 同意授權瀏覽/列印電子全文服務,2019-07-05起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7103041060-1.pdf6.91 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.