Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96476
標題: Pb-Sn-S 固態量子點敏化太陽能電池
Pb-Sn-S solid-state quantum dot sensitized solar cells
作者: 黃雅迎
Ya-Ying Huang
關鍵字: 鉛錫硫;量子點敏化太陽能電池;連續離子吸附沉積法;Pb-Sn-S;quantum dots sensitized solar cells (QDSSCs);successive ionic layer adsorption and reaction (SILAR)
引用: [1] 業宸希, 國立台南大學自然科學研究所碩士論文 (2006) [2] Research Cell Record efficiency-chart (from National Renewable Energy Laboratory (USA)) (2018) [3] H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, H. Sun, and Y. Zhang, ' Synthesis of ternary PbxSn1−xS nanocrystals with tunable band gap,' CrystEngComm, 13, 6628-6631 (2011). [4] D. M. Unuchak, K. Bente, G. Kloess, W. Schmitz, V. F. Gremenok, V. A. Ivanov, and V. Ukhov, 'Structure and optical properties of PbS-SnS mixed crystal thin films,' physical status solidi C, 6, 1191-1194 (2009). [5] R. L. Orimi, H. K. Fadafan and A. Asadpour, 'Effect of Sn concentration on optical and structural properties of Pb1-xSnxS nanopowder,' European Physical Journal-Applied Physics, 67 , (2014). [6] R. B. Soriano, C.D. Malliakas,J. Wu and M. G. Kanatzidis, 'Cubic Form of Pb2-xSnxS2 stabilized through size reduction to the Nanoscale,' Journal of the American Chemical Society, 134, 3228-3233 (2012). [7] 彭康政, 國立中興大學碩士論文(2017) [8] 曾彥鈞, 國立中興大學碩士論文(2015) [9] 謝昇峰, 國立中興大學碩士論文(2016) [10] Chunrui Wang, Kaibin Tang,1 Qing Yang, Guozhen Shen, Bin Hai, Changhua An,Jian Zuo, and Yitai Qian, ' Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method, ' Journal of Solid State Chemistry, 160, 50-53(2001) [11] 陳又維,國立中興大學物理研究所碩士(2015) [12] W. H. Nguyen, C. D. Bailie , E. L. Unger and M. D. McGehee, 'Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells,' Journal of the American Chemical Society, 136, 10996-11001 (2014). [13] S. Wang, W. Yuan and Y. S. Shirley , 'Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells,' ACS Applied Material and Interfaces, 7, 24791-24798 (2015). [14] Y. Gao, E. Talgorn, M. Aerts, M. Tuan Trinh, J. M. Schins, A. J. Houtepen and L. D. A. Siebbelest, 'Enhanced Hot-Carrier Cooling and Ultrafast Spectral Diffusion in Strongly Coupled PbSe Quantum-Dot Solids,' Nano Letters, 11, 5471-5476 (2011). [15] 陳佳靜, 國立中興大學物理所碩士論文 (2008). [16] M. Stolka , J. F. Yanus, and D. M. Pai,'Hole Transport in Solld Solutions of a Diamine in Polycarbonate,' The Journal of Physical Chemistry, 88, 4707-4714 (1984). [17] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tasy, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir,and S. Weiss, 'Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,' Science, 307, 538-544 (2005). [18] C. J. Stolle, T. B. Harvey and B. A. Korgel,'Nanocrystal photovoltaics: a review of recent progress,' Current Opinion in Chemical Engineering, 2, 160-167 (2013). [19] 楊惟智, 國立中興大學物理所碩士論文 (2013) [20] R. D. Schaller and V. I. Klimov,'High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,' Physical Review Letters, 92, 1866011 (2004).. [21] 李德龍, 國立中興大學物理所碩士論文 (2007) [22] 林義成, 國立彰化師範大學機電系顯示所 (2005). [23] 陳頤承, 郭昭顯, 陳俊亨, 工業材料雜誌258期(2008). [24] 顏志豪, 國立中興大學物理所碩士論文( 2013). [25] R. G. Gordon,'Criteria for Choosing Transparent Conductors,' MRS BULLETIN, 25, 52-57 (2000). [26] L. Kavan and M. Gratzel,'Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis,' Electrochimica Acta, 40, 643-652 (1995). [27] H.J. Snaith and M. Grätzel,'The Role of a 'Schottky Barrier' at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells', Advanced Materials, 18, 1910-1914 (2006). [28] D. Liu and T. L. Kelly,'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature Photonics, 8, 133-138 (2014). [29] I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin,E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel and M. D. McGehee,'Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,' Advanced Functional Materials, 19, 2431-2436 (2009). [30] G. P. Smestad, F.C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura,' Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells,' Solar Energy Materials and Solar Cells, 92, 371-373 (2008).
摘要: 
本實驗使用兩階段的連續離子層吸附反應法(successive ionic layer adsorption and reaction,SILAR)去合成PbS以及SnS兩種量子點,再藉由退火形成三元化合物的Pb-Sn-S半導體量子點依附在多孔性二氧化鈦之薄膜內,並將此量子點應用在固態量子點敏化太陽能電池。
為了確認是否合出材料為半導體Pb-Sn-S,因此用X-ray粉末繞射儀(Powder X-ray diffraction,XRD)分析Pb-Sn-S 的晶相,發現當中含有鉛的氧化物(Pb5O8),再經由UV-Vis 光譜分析計算得知能隙為1.65 eV,從TEM分析可以看到Pb-Sn-S顆粒大小為 14.47 nm,再從FESEM的頗面圖可以知道Spiro-OMeTAD + Pb-Sn-S + TiO2 的厚度為 2.573 μm,最後藉由EDS的結果可以知道鉛錫瑠的比例為Pb0.68Sn0.32S。
實驗的電池結構為固態電池,是由FTO + Blocking layer + TiO2 + 量子點 + Spiro-OMeTAD + 金電極組成,而最佳樣品的條件為PbS 10 cycle / SnS 15 cycle,浸泡時間皆為1分鐘,其轉換效率 (η)為 0.680 %,開路電壓(VOC)為 0.35 V,短路電流(JSC)為 3.76 mA / cm2,填充因子(fill-factor,FF)為 51.72 %。

This thesis describes the photovoltaic performance of lead tin sulfide (Pb-Sn-S) solid-state quantum dot-sensitized solar cells (QDSSCs). The light absorber material of ternary semiconductor Pb-Sn-S quantum dots were grown on a mesoporous TiO2 electrode using the two-stage successive ionic layer adsorption reaction (SILAR) process. UV-Visible spectroscopy showed the optimal energy gap of 1.65 eV. Energy–dispersive X-ray spectroscopy revealed the chemical composition ratio to be 0.68: 0.32: 1 (i.e. non-stoichiometric formula Pb0.68Sn0.32S). X-ray diffraction showed mixed phases of mostly Pb-Sn-S and lead oxide. Transmission electron microscopy showed an average particle size around 16.5 nm. Solid-state QDSSCs were fabricated from the synthesized Pb-Sn-S quantum dots using Spiro-OMeTAD as the hole-transporting material. Cross-sectional SEM image showed the thickness of the absorption layer to be ~ 2.5 μm. The best cell, prepared using the conditions of PbS – 10 SILAR cycles and SnS – 15 cycles, yielded an open circuit voltage (Voc) of 0.35 V, a short circuit current density (Jsc) of 3.76 mA/cm2, a fill-factor (FF) of 51.72 % and an efficiency (η) of 0.680 % under 100 mW/cm2 illumination.
URI: http://hdl.handle.net/11455/96476
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-23起公開。
Appears in Collections:奈米科學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105051071-1.pdf5.19 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.