Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96497
標題: Pb-Sn-S固態半導體敏化太陽能電池
Pb-Sn-S solid-state semiconductor-sensitized solar cells
作者: 彭康政
Kang-Cheng Peng
關鍵字: 固態敏化太陽能電池;Pb-Sn-S;solid-state solar cell
引用: [1] Research Cell Record efficiency-chart (from National Renewable Energy Laboratory (USA)) (2017).. [2] H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, H. Sun, and Y. Zhang, ' Synthesis of ternary PbxSn1−xS nanocrystals with tunable band gap,' CrystEngComm, 13, 6628-6631 (2011). [3] D. M. Unuchak, K. Bente, G. Kloess, W. Schmitz, V. F. Gremenok, V. A. Ivanov, and V. Ukhov, 'Structure and optical properties of PbS-SnS mixed crystal thin films,' physical status solidi C, 6, 1191-1194 (2009). [4] R. L. Orimi, H. K. Fadafan and A. Asadpour, 'Effect of Sn concentration on optical and structural properties of Pb1-xSnxS nanopowder,' European Physical Journal-Applied Physics, 67 , (2014). [5] R. B. Soriano, C.D. Malliakas,J. Wu and M. G. Kanatzidis, 'Cubic Form of Pb2-xSnxS2 stabilized through size reduction to the Nanoscale,' Journal of the American Chemical Society, 134, 3228-3233 (2012). [6] 曾彥鈞, 國立中興大學物理研究所碩士論文 (2015). [7] 謝昇峰, 國立中興大學奈米科學研究所碩士論文 (2016). [8] 陳又維, 國立中興大學物理研究所碩士論文 (2015). [9] W. H. Nguyen, C. D. Bailie , E. L. Unger and M. D. McGehee, 'Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells,' Journal of the American Chemical Society, 136, 10996-11001 (2014). [10] S. Wang, W. Yuan and Y. S. Shirley , 'Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells,' ACS Applied Material and Interfaces, 7, 24791-24798 (2015). [11] Y. Gao, E. Talgorn, M. Aerts, M. Tuan Trinh, J. M. Schins, A. J. Houtepen and L. D. A. Siebbelest, 'Enhanced Hot-Carrier Cooling and Ultrafast Spectral Diffusion in Strongly Coupled PbSe Quantum-Dot Solids,' Nano Letters, 11, 5471-5476 (2011). [12] J. Bandara and M. Thelakkat,'Thickness dependence of device parameters in solid state dye sensitized solar cells,' Journal of The National Science Foundation of Sri Lanka, 39, 35-42 (2011). [13] 陳佳靜, 國立中興大學物理所碩士論文 (2008). [14] M. Stolka , J. F. Yanus, and D. M. Pai,'Hole Transport in Solld Solutions of a Diamine in Polycarbonate,' The Journal of Physical Chemistry, 88, 4707-4714 (1984). [15] C. J. Stolle, T. B. Harvey and B. A. Korgel,'Nanocrystal photovoltaics: a review of recent progress,' Current Opinion in Chemical Engineering, 2, 160-167 (2013). [16] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee and Y. E. Sung,' Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells,' Journal of Photochemistry and Photobiology A-Chemistry, 179, 135-141 (2006). [17] R. D. Schaller and V. I. Klimov,'High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,' Physical Review Letters, 92, 1866011 (2004). [18] 楊惟智, 國立中興大學物理所碩士論文 (2013). [19] R. G. Gordon,'Criteria for Choosing Transparent Conductors,' MRS BULLETIN, 25, 52-57 (2000). [20] L. Kavan and M. Gratzel,'Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis,' Electrochimica Acta, 40, 643-652 (1995) [21] H.J. Snaith and M. Grätzel,'The Role of a 'Schottky Barrier' at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells', Advanced Materials, 18, 1910-1914 (2006). [22] D. Liu and T. L. Kelly,'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,' Nature Photonics, 8, 133-138 (2014). [23] I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin,E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel and M. D. McGehee,'Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,' Advanced Functional Materials, 19, 2431-2436 (2009).
摘要: 
本實驗主要為將三元化合物半導體量子點Pb-Sn-S運用至固態敏化太陽電池中之吸光材料。實驗採用兩階段的連續離子層吸附反應法(SILAR)並經過退火將三元化合物半導體量子點合成於多孔性TiO2薄膜內,最後在填充電洞傳輸層(Spiro-OMeTAD)。
在最佳樣品條件 : PbS(18)/SnS(9) cycles 浸泡時間分別為30 sec / 35 sec得到的最佳轉換效率為0.479 %,開路電壓為0.35 V,短路電流為2.58 mA/cm2,填充因子FF為53.03 %,利用X-ray粉末繞射儀分析所合成出材料的Pb-Sn-S半導體晶相,發現其中可能混雜者鉛及錫的氧化物和硫酸鉛的晶相,並經由UV-Vis Spectroscopy進行分析與計算能隙約為1.54 eV,藉由TEM得知Pb-Sn-S顆粒大小平均約為 10 nm,最後經由FESEM分析電池剖面結構得知吸收層TiO2 + Pb-Sn-S + Spiro - OMeTAD厚度約為1.1 μm,並進行EDS元素分析得到比例約為Pb0.59Sn0.41S。

In this experiment, we applied the Pb-Sn-S QDs as light absorption material for solid-state solar cells. Two-step SILAR (successive ionic layer adsorption and reaction) was used to synthesize the ternary compound QDs into the mesoporous TiO2 followed by filling the HTM (Spiro-OMeTAD).
In the best condition : PbS(18)/SnS(9) SILAR cycles ; dipping time 30 sec / 35 sec. We got the best conversion efficiency: 0.479 %, Voc: 0.35 V, Jsc: 2.58 mA/cm2, FF (fill factor): 53.03%. We analyzed the ternary phase Pb-Sn-S by XRD and found that the Pb-Sn-S phase probably mixed with lead oxide, tin oxide, and lead sulfate. UV-vis Spectroscopy analysis the energy gap to be about 1.54 eV. TEM showed the average particle size of Pb-Sn-S to be about 10 nm. The absorption layer (TiO2 + Pb-Sn-S + Spiro – OMeTAD), estimated from FESEM cross-sectional images, is about 1.1 μm. Finally, the atomic ratios based on EDS elemental analysis are approxitae Pb0.59Sn0.41S.
URI: http://hdl.handle.net/11455/96497
Rights: 同意授權瀏覽/列印電子全文服務,2020-07-25起公開。
Appears in Collections:物理學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7104054004-1.pdf3.58 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.