Please use this identifier to cite or link to this item:
標題: 台灣土雞小黃濾泡急性熱緊迫反應之功能性基因體學探討
A functional genomics study on the acute heat stress response in small yellow follicles of Taiwan country chickens
作者: 鄭淳予
Chuen-Yu Cheng
關鍵字: 急性熱緊迫;小黃濾泡;轉錄體;蛋白質體;台灣土雞;Acute heat stress;small yellow follicles;transcriptome;proteome;Taiwan country chickens
引用: Adly, M. A., H. A. Assaf, and M. R. Hussein. 2006. Expression of the heat shock protein-27 in the adult human scalp skin and hair follicle: hair cycle-dependent changes. J. Am. Acad. Dermatol. 54:811-817. Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, and S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. Argov, N., U. Moallem, and D. Sklan. 2005. Summer heat stress alters the mRNA expression of selective-uptake and endocytotic receptors in bovine ovarian cells. Theriogenology 64:1475-1489. Aroyo, A., S. Yavin, A. Arav, and Z. Roth. 2007. Maternal hyperthermia disrupts developmental competence of follicle-enclosed oocytes: in vivo and ex vivo studies in mice. Theriogenology 67:1013-1021. Bahr, J. M., S. C. Wang, M. Y. Huang, and F. O. Calvo. 1983. Steroid concentrations in isolated theca and granulosa layers of preovulatory follicles during the ovulatory cycle of the domestic hen. Biol. Reprod. 29:326-334. Balnave, D., and S. K. Muheereza. 1997. Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poult. Sci. 76:588-593. Bany, B. M., and G. A. Schultz. 2001. Increased expression of a novel heat shock protein transcript in the mouse uterus during decidualization and in response to progesterone. Biol. Reprod. 64:284-292. Barber, D. L., E. J. Sanders, R. Aebersold, and W. J. Schneider. 1991. The receptor for yolk lipoprotein deposition in the chicken oocyte. J. Biol. Chem. 266:18761-18770. Beaupre, C. E., C. J. Tressler, S. J. Beaupre, J. L. Morgan, W. G. Bottje, and J. D. Kirby. 1997. Determination of testis temperature rhythms and effects of constant light on testicular function in the domestic fowl (Gallus domesticus). Biol. Reprod. 56:1570-1575. Bebington, C., F. J. Doherty, and S. D. Fleming. 2001. The possible biological and reproductive functions of ubiquitin. Hum. Reprod. Update 7:102-111. Beckham, J. T., G. J. Wilmink, S. R. Opalenik, M. A. Mackanos, A. A. Abraham, K. Takahashi, C. H. Contag, T. Takahashi, and E. D. Jansen. 2010. Microarray analysis of cellular thermotolerance. Lasers. Surg. Med. 42:752-765. Ben-Ze'ev, A., and A. Amsterdam. 1986. Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc. Natl. Acad. Sci. U. S. A. 83:2894-2898. Beraldo, F. H., A. Thomas, B. Kolisnyk, P. H. Hirata, X. De Jaeger, A. C. Martyn, J. Fan, D. F. Goncalves, M. F. Cowan, T. Masood, V. R. Martins, R. Gros, V. F. Prado, and M. A. Prado. 2015. Hyperactivity and attention deficits in mice with decreased levels of stress-inducible phosphoprotein 1 (STIP1). Dis. Model. Mech. 8:1457-1466. Boon, R. A., and A. J. Horrevoets. 2009. Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie 29:39-40, 41-33. Boren, J., M. M. Veniant, and S. G. Young. 1998. Apo B100-containing lipoproteins are secreted by the heart. J. Clin. Invest. 101:1197-1202. Borges, S. A., A. V. Fischer da Silva, A. Majorka, D. M. Hooge, and K. R. Cummings. 2004. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci. 83:1551-1558. Buccellato, M. A., T. Carsillo, Z. Traylor, and M. Oglesbee. 2007. Heat shock protein expression in brain: a protective role spanning intrinsic thermal resistance and defense against neurotropic viruses. Prog. Brain Res. 162:395-415. Budanov, A. V., and M. Karin. 2008. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451-460. Byrne, B. M., M. Gruber, and G. Ab. 1989. The evolution of egg yolk proteins. Prog Biophys. Mol. Biol. 53:33-69. Chai, A. B., A. J. Ammit, and I. C. Gelissen. 2017. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir. Res. 18:41. Chang, L., and R. D. Goldman. 2004. Intermediate filaments mediate cytoskeletal crosstalk. Nat. Rev. Mol. Cell Biol. 5:601-613. Che, M., R. Wang, X. Li, H. Y. Wang, and X. F. Zheng. 2016. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21:143-149. Chen, C. F., Y. L. Shiue, C. J. Yen, P. C. Tang, H. C. Chang, and Y. P. Lee. 2007. Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology 68:1305-1315. Cheng, C. Y., W. L. Tu, S. H. Wang, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2015. Annotation of differential gene expression in small yellow follicles of a broiler-type strain of Taiwan country chickens in response to acute Heat stress. PLoS One 10:e0143418. Chowdhury, I., K. Thomas, and W. E. Thompson. 2016. Prohibitin (PHB) roles in granulosa cell physiology. Cell. Tissue Res. 363:19-29. Clark, C. J., and E. H. Sage. 2008. A prototypic matricellular protein in the tumor microenvironment--where there's SPARC, there's fire. J. Cell Biochem. 104:721-732. Cooper, M. A., and K. W. Washburn. 1998. The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poult. Sci. 77:237-242. Cray, C., J. Zaias, and N. H. Altman. 2009. Acute phase response in animals: a review. Comp. Med. 59:517-526. Cui, H., Y. Kong, and H. Zhang. 2012. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal. Transduct. 2012:646354. Dallas, P. B., N. G. Gottardo, M. J. Firth, A. H. Beesley, K. Hoffmann, P. A. Terry, J. R. Freitas, J. M. Boag, A. J. Cummings, and U. R. Kees. 2005. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR -- how well do they correlate? BMC Genomics 6:59. Davidson, W. S., T. Hazlett, W. W. Mantulin, and A. Jonas. 1996. The role of apolipoprotein AI domains in lipid binding. Proc. Natl. Acad. Sci. U. S. A. 93:13605-13610. Deeley, R. G., D. P. Mullinix, W. Wetekam, H. M. Kronenberg, M. Meyers, J. D. Eldridge, and R. F. Goldberger. 1975. Vitellogenin synthesis in the avian liver. Vitellogenin is the precursor of the egg yolk phosphoproteins. J. Biol. Chem. 250:9060-9066. Dekker, R. J., R. A. Boon, M. G. Rondaij, A. Kragt, O. L. Volger, Y. W. Elderkamp, J. C. Meijers, J. Voorberg, H. Pannekoek, and A. J. Horrevoets. 2006. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107:4354-4363. Delavallee, L., L. Cabon, P. Galan-Malo, H. K. Lorenzo, and S. A. Susin. 2011. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63:221-232. Donkoh, A. 1989. Ambient temperature: a factor affecting performance and physiological response of broiler chickens. Int. J. Biometeorol. 33:259-265. Donoghue, D. J., B. F. Krueger, B. M. Hargis, A. M. Miller, and M. el Halawani. 1989. Thermal stress reduces serum luteinizing hormone and bioassayable hypothalamic content of luteinizing hormone-releasing hormone in hens. Biol. Reprod. 41:419-424. Ehrnsperger, M., S. Graber, M. Gaestel, and J. Buchner. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16:221-229. el-Halawani, M. E., P. E. Waibel, J. R. Appel, and A. L. Good. 1973. Effects of temperature stress on catecholamines and corticosterone of male turkeys. Am. J. Physiol. 224:384-388. Emery, D. A., P. Vohra, R. A. Ernst, and S. R. Morrison. 1984. The effect of cyclic and constant ambient temperatures on feed consumption, egg production, egg weight, and shell thickness of hens. Poult. Sci. 63:2027-2035. Evans, M. I., R. Silva, and J. B. Burch. 1988. Isolation of chicken vitellogenin I and III cDNAs and the developmental regulation of five estrogen-responsive genes in the embryonic liver. Genes Dev. 2:116-124. Finn, R. N. 2007. Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biol. Reprod. 76:926-935. Gaestel, M., R. Gotthardt, and T. Muller. 1993. Structure and organisation of a murine gene encoding small heat-shock protein Hsp25. Gene 128:279-283. Galou, M., J. Gao, J. Humbert, M. Mericskay, Z. Li, D. Paulin, and P. Vicart. 1997. The importance of intermediate filaments in the adaptation of tissues to mechanical stress: evidence from gene knockout studies. Biol. Cell 89:85-97. Genc, M. R., E. Karasahin, A. B. Onderdonk, A. M. Bongiovanni, M. L. Delaney, S. S. Witkin, Microbiology, and G. Prematurity Study. 2005. Association between vaginal 70-kd heat shock protein, interleukin-1 receptor antagonist, and microbial flora in mid trimester pregnant women. Am. J. Obstet. Gynecol. 192:916-921. Goldman, R. D., B. Grin, M. G. Mendez, and E. R. Kuczmarski. 2008. Intermediate filaments: versatile building blocks of cell structure. Curr. Opin. Cell. Biol. 20:28-34. Gruys, E., M. J. Toussaint, T. A. Niewold, and S. J. Koopmans. 2005. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6:1045-1056. Guo, Y., P. Xiao, S. Lei, F. Deng, G. G. Xiao, Y. Liu, X. Chen, L. Li, S. Wu, Y. Chen, H. Jiang, L. Tan, J. Xie, X. Zhu, S. Liang, and H. Deng. 2008. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta. Biochim. Biophys. Sin. (Shanghai). 40:426-436. Guzeloglu, A., J. D. Ambrose, T. Kassa, T. Diaz, M. J. Thatcher, and W. W. Thatcher. 2001. Long-term follicular dynamics and biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress. Anim. Reprod. Sci. 66:15-34. Hansen, P. J. 2009. Effects of heat stress on mammalian reproduction. Philos. Trans. R Soc. Lond. B Biol. Sci. 364:3341-3350. Hernandez, A. G., and J. M. Bahr. 2003. Role of FSH and epidermal growth factor (EGF) in the initiation of steroidogenesis in granulosa cells associated with follicular selection in chicken ovaries. Reproduction 125:683-691. Huang, E. S., K. J. Kao, and A. V. Nalbandov. 1979. Synthesis of sex steroids by cellular components of chicken follicles. Biol. Reprod. 20:454-461. Iannaccone, A., F. Giorgianni, D. D. New, T. J. Hollingsworth, A. Umfress, A. H. Alhatem, I. Neeli, N. I. Lenchik, B. J. Jennings, J. I. Calzada, S. Satterfield, D. Mathews, R. I. Diaz, T. Harris, K. C. Johnson, S. Charles, S. B. Kritchevsky, I. C. Gerling, S. Beranova-Giorgianni, and M. Z. Radic. 2015. Circulating autoantibodies in age-related macular degeneration recognize human macular tissue antigens implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. PLoS One 10:e0145323. Irles, P., S. Ramos, and M. D. Piulachs. 2017. SPARC preserves follicular epithelium integrity in insect ovaries. Dev. Biol. 422:105-114. Jansa, P., S. W. Mason, U. Hoffmann-Rohrer, and I. Grummt. 1998. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17:2855-2864. Johnson, A. L. 1981. Comparison of three serial blood sampling techniques on plasma hormone concentrations in the laying hen. Poult. Sci. 60:2322-2327. Johnson, A. L., J. T. Bridgham, J. P. Witty, and J. L. Tilly. 1996. Susceptibility of avian ovarian granulosa cells to apoptosis is dependent upon stage of follicle development and is related to endogenous levels of bcl-xlong gene expression. Endocrinology 137:2059-2066. Johnson, A. L., and D. C. Woods. 2009. Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation. Gen. Comp. Endocrinol. 163:12-17. Johnston, J. A., C. L. Ward, and R. R. Kopito. 1998. Aggresomes: a cellular response to misfolded proteins. J. Cell. Biol. 143:1883-1898. Joke, T. 1970. Factors affecting the plasma prolactin level in the cow and the goat as determined by radioimmunoassay. Endocrinol. Jpn. 17:393-401. Jonak, C., G. Klosner, and F. Trautinger. 2009. Significance of heat shock proteins in the skin upon UV exposure. Front. Biosci. (Landmark Ed.) 14:4758-4768. Kahari, V. M., and U. Saarialho-Kere. 1997. Matrix metalloproteinases in skin. Exp. Dermatol. 6:199-213. Kalogeraki, A., E. Giannikaki, M. Tzardi, M. Kafousi, P. Ieromonachou, K. Dariviannaki, J. Askoxylakis, D. Tsiftsis, E. Stathopoulos, and O. Zoras. 2007. Correlation of heat shock protein (HSP70) expression with cell proliferation (MIB1), estrogen receptors (ER) and clinicopathological variables in invasive ductal breast carcinomas. J. Exp. Clin. Cancer Res. 26:367-368. Kamali Sangani, A., A. A. Masoudi, and R. Vaez Torshizi. 2017. Association of mitochondrial function and sperm progressivity in slow- and fast-growing roosters. Poult. Sci. 96:211-219. Kang, L., X. Cui, Y. Zhang, C. Yang, and Y. Jiang. 2013. Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing. BMC Genomics 14:352. Kaplanski, G., V. Marin, F. Montero-Julian, A. Mantovani, and C. Farnarier. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24:25-29. Katoh, Y., M. Fujimoto, K. Nakamura, S. Inouye, K. Sugahara, H. Izu, and A. Nakai. 2004. Hsp25, a member of the Hsp30 family, promotes inclusion formation in response to stress. FEBS Lett. 565:28-32. Kim, H. J., H. J. Joo, Y. H. Kim, S. Ahn, J. Chang, K. B. Hwang, D. H. Lee, and K. J. Lee. 2011. Systemic analysis of heat shock response induced by heat shock and a proteasome inhibitor MG132. PLoS One 6:e20252. Knight, J., and S. Harrison. 2012. Evaluating the impacts of global warming on geomorphological systems. Ambio. 41:206-210. Kolialexi, A., A. Mavrou, G. Spyrou, and G. T. Tsangaris. 2008. Mass spectrometry-based proteomics in reproductive medicine. Mass Spectrom. Rev. 27:624-634. Krulich, L., E. Hefco, P. Illner, and C. B. Read. 1974. The effects of acute stress on the secretion of LH, FSH, prolactin and GH in the normal male rat, with comments on their statistical evaluation. Neuroendocrinology 16:293-311. Kuo, Y. M., Y. L. Shiue, C. F. Chen, P. C. Tang, and Y. P. Lee. 2005. Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64:1490-1502. Kushner, I. 1993. Regulation of the acute phase response by cytokines. Perspect. Biol. Med. 36:611-622. Lee, Y. P., and T. L. Chen. 2007. Daytime behavioural patterns of slow-growing chickens in deep-litter pens with perches. Br. Poult. Sci. 48:113-120. Li, C., X. Wang, G. Wang, N. Li, and C. Wu. 2011. Expression analysis of global gene response to chronic heat exposure in broiler chickens (Gallus gallus) reveals new reactive genes. Poult. Sci. 90:1028-1036. Li, G. C. 1987. Heat shock proteins: role in thermotolerance, drug resistance, and relationship to DNA topoisomerases. NCI Monogr. 4:99-103. Li, H., B. Benipal, S. Zhou, C. Dodia, S. Chatterjee, J. Q. Tao, E. M. Sorokina, T. Raabe, S. I. Feinstein, and A. B. Fisher. 2015. Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic. Biol. Med. 87:356-365. Li, J., H. Gao, Z. Tian, Y. Wu, Y. Wang, Y. Fang, L. Lin, Y. Han, S. Wu, I. Haq, and S. Zeng. 2016. Effects of chronic heat stress on granulosa cell apoptosis and follicular atresia in mouse ovary. J. Anim. Sci. Biotechnol. 7:57. Liang, G., C. Lian, D. Huang, W. Gao, A. Liang, Y. Peng, W. Ye, Z. Wu, and P. Su. 2014. Endoplasmic reticulum stress-unfolding protein response-apoptosis cascade causes chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model. PLoS One 9:e86894. Lin, P., Y. Yang, X. Li, F. Chen, C. Cui, L. Hu, Q. Li, W. Liu, and Y. Jin. 2012. Endoplasmic reticulum stress is involved in granulosa cell apoptosis during follicular atresia in goat ovaries. Mol. Reprod. Dev. 79:423-432. Lindner, R. A., J. A. Carver, M. Ehrnsperger, J. Buchner, G. Esposito, J. Behlke, G. Lutsch, A. Kotlyarov, and M. Gaestel. 2000. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur. J. Biochem. 267:1923-1932. Liu, J. J., X. Ma, L. B. Cai, Y. G. Cui, and J. Y. Liu. 2010. Downregulation of both gene expression and activity of Hsp27 improved maturation of mouse oocyte in vitro. Reprod. Biol. Endocrinol. 8:47. Liu, Y., J. Wang, Y. Yi, H. Zhang, J. Liu, M. Liu, C. Yuan, D. Tang, I. J. Benjamin, and X. Xiao. 2006. Induction of KLF4 in response to heat stress. Cell Stress Chaperones 11:379-389. Luders, J., J. Demand, and J. Hohfeld. 2000. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275:4613-4617. Luo, Q. B., X. Y. Song, C. L. Ji, X. Q. Zhang, and D. X. Zhang. 2014. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene 546:200-205. Madekurozwa, M. C. 2012. An immunohistochemical study of ovarian follicle histogenesis in the early post-hatch Japanese quail (Coturnix coturnix japonica). Anat. Histol. Embryol. 41:79-86. Man, S. M., and T. D. Kanneganti. 2016. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy 12:2504-2505. Marceau, N., B. Schutte, S. Gilbert, A. Loranger, M. E. Henfling, J. L. Broers, J. Mathew, and F. C. Ramaekers. 2007. Dual roles of intermediate filaments in apoptosis. Exp. Cell Res. 313:2265-2281. Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889-894. Mason, S. W., E. E. Sander, and I. Grummt. 1997. Identification of a transcript release activity acting on ternary transcription complexes containing murine RNA polymerase I. EMBO J. 16:163-172. Matsumoto, H., S. Sasazaki, A. Fujiwara, N. Ichihara, T. Kikuchi, and H. Mannen. 2010. Accumulation of caveolin-3 protein is limited in damaged muscle in chicken muscular dystrophy. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157:68-72. McMichael, A. J., J. W. Powles, C. D. Butler, and R. Uauy. 2007. Food, livestock production, energy, climate change, and health. Lancet 370:1253-1263. Miao, J., Y. Bao, J. Ye, H. Shao, K. Qian, and A. Qin. 2015. Transcriptional profiling of host gene expression in chicken embryo fibroblasts infected with reticuloendotheliosis virus strain HA1101. PLoS One 10:e0126992. Morais, V. A., D. Haddad, K. Craessaerts, P. J. De Bock, J. Swerts, S. Vilain, L. Aerts, L. Overbergh, A. Grunewald, P. Seibler, C. Klein, K. Gevaert, P. Verstreken, and B. De Strooper. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344:203-207. Muiruri, H. K., and P. C. Harrison. 1991. Effect of roost temperature on performance of chickens in hot ambient environments. Poult. Sci. 70:2253-2258. Nassoy, P., and C. Lamaze. 2012. Stressing caveolae new role in cell mechanics. Trends Cell. Biol. 22:381-389. Neill, J. D. 1970. Effect of 'stress' on serum prolactin and luteinizing hormone levels during the estrous cycle of the rat. Endocrinology 87:1192-1197. Neuer, A., S. D. Spandorfer, P. Giraldo, S. Dieterle, Z. Rosenwaks, and S. S. Witkin. 2000. The role of heat shock proteins in reproduction. Hum. Reprod. Update 6:149-159. New, M. 2011. Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Philos. Trans. A Math. Phys. Eng. Sci. 369:4-5. Novero, R. P., M. M. Beck, E. W. Gleaves, A. L. Johnson, and J. A. Deshazer. 1991. Plasma progesterone, luteinizing hormone concentrations, and granulosa cell responsiveness in heat-stressed hens. Poult. Sci. 70:2335-2339. Onagbesan, O., V. Bruggeman, and E. Decuypere. 2009. Intra-ovarian growth factors regulating ovarian function in avian species: a review. Anim. Reprod. Sci. 111:121-140. Paes, V. M., L. A. Vieira, H. H. Correia, N. A. Sa, A. A. Moura, A. D. Sales, A. P. Rodrigues, D. M. Magalhaes-Padilha, F. W. Santos, G. A. Apgar, C. C. Campello, L. S. Camargo, and J. R. Figueiredo. 2016. Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex. Theriogenology 86:994-1003. Park, H. G., S. I. Han, S. Y. Oh, and H. S. Kang. 2005. Cellular responses to mild heat stress. Cell Mol. Life Sci. 62:10-23. Pennarossa, G., S. Maffei, M. M. Rahman, G. Berruti, T. A. Brevini, and F. Gandolfi. 2012. Characterization of the constitutive pig ovary heat shock chaperone machinery and its response to acute thermal stress or to seasonal variations. Biol. Reprod. 87:119. Qian, Y., L. Shao, C. Yuan, C. Y. Jiang, J. Liu, C. Gao, L. Gao, Y. G. Cui, S. W. Jiang, J. Y. Liu, and Y. Meng. 2016. Implication of differential peroxiredoxin 4 expression with age in ovaries of mouse and human for ovarian aging. Curr. Mol. Med. 16:243-251. Regassa, A., F. Rings, M. Hoelker, U. Cinar, E. Tholen, C. Looft, K. Schellander, and D. Tesfaye. 2011. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells. BMC Genomics 12:57. Rhee, S. G., H. A. Woo, I. S. Kil, and S. H. Bae. 2012. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287:4403-4410. Roche, M., P. Rondeau, N. R. Singh, E. Tarnus, and E. Bourdon. 2008. The antioxidant properties of serum albumin. FEBS Lett. 582:1783-1787. Rogers, R. S., M. S. Beaudoin, J. L. Wheatley, D. C. Wright, and P. C. Geiger. 2015. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects. J. Appl. Physiol. (1985) 118:98-106. Ross, E. A., M. R. Douglas, S. H. Wong, E. J. Ross, S. J. Curnow, G. B. Nash, E. Rainger, D. Scheel-Toellner, J. M. Lord, M. Salmon, and C. D. Buckley. 2006. Interaction between integrin alpha9beta1 and vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil apoptosis. Blood 107:1178-1183. Roth, Z. 2015. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and molecular mechanisms of heat stress related to bovine ovarian function. J. Anim. Sci. 93:2034-2044. Roth, Z., R. Meidan, R. Braw-Tal, and D. Wolfenson. 2000. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 120:83-90. Rozenboim, I., N. Mobarky, R. Heiblum, Y. Chaiseha, S. W. Kang, I. Biran, A. Rosenstrauch, D. Sklan, and M. E. El Halawani. 2004. The role of prolactin in reproductive failure associated with heat stress in the domestic turkey. Biol. Reprod. 71:1208-1213. Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni. 2007. The effect of heat stress on ovarian function of laying hens. Poult. Sci. 86:1760-1765. Rupik, W., K. Jasik, J. Bembenek, and W. Widlak. 2011. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159:349-366. Saha, S., P. Ghosh, D. Mitra, S. Mukherjee, S. Bhattacharya, and S. S. Roy. 2007. Localization and thyroid hormone influenced expression of collagen II in ovarian tissue. Cell Physiol. Biochem. 19:67-76. Sahin, K., N. Sahin, O. Kucuk, A. Hayirli, and A. S. Prasad. 2009. Role of dietary zinc in heat-stressed poultry: a review. Poult. Sci. 88:2176-2183. Sakatani, M., N. V. Alvarez, M. Takahashi, and P. J. Hansen. 2012. Consequences of physiological heat shock beginning at the zygote stage on embryonic development and expression of stress response genes in cattle. J. Dairy. Sci. 95:3080-3091. Sakumoto, R., K. G. Hayashi, S. Saito, H. Kanahara, K. Kizaki, and K. Iga. 2015. Comparison of the global gene expression profiles in the bovine endometrium between summer and autumn. J. Reprod. Dev. 61:297-303. Schneider, W. J. 1992. Lipoprotein receptors in oocyte growth. Clin. Investig. 70:385-390. Schwanhausser, B. D., Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen, M. Selbach. 2011. Global quantification of mammalian gene expression control. Nature 473:337-342. Seo, K., S. Seo, S. H. Ki, and S. M. Shin. 2016. Compound C increases sestrin2 expression via mitochondria-dependent ROS production. Biol. Pharm. Bull. 39:799-806. Serke, H., J. Bausenwein, J. Hirrlinger, M. Nowicki, C. Vilser, P. Jogschies, F. A. Hmeidan, V. Blumenauer, and K. Spanel-Borowski. 2010. Granulosa cell subtypes vary in response to oxidized low-density lipoprotein as regards specific lipoprotein receptors and antioxidant enzyme activity. J. Clin. Endocrinol. Metab. 95:3480-3490. Shang, Y., H. Wang, P. Jia, H. Zhao, C. Liu, W. Liu, Z. Song, Z. Xu, L. Yang, Y. Wang, and W. Li. 2016. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy 12:1575-1592. Shehab-El-Deen, M. A., J. L. Leroy, M. S. Fadel, S. Y. Saleh, D. Maes, and A. Van Soom. 2010. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim. Reprod. Sci. 117:189-200. Shi, L., J. Zhang, Z. Lai, Y. Tian, L. Fang, M. Wu, J. Xiong, X. Qin, A. Luo, and S. Wang. 2016. Long-term moderate oxidative stress decreased ovarian reproductive function by reducing follicle quality and progesterone production. PLoS One 11:e0162194. Shimizu, T., I. Ohshima, M. Ozawa, S. Takahashi, A. Tajima, M. Shiota, H. Miyazaki, and Y. Kanai. 2005. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction 129:463-472. Shiue, Y. L., L. R. Chen, C. F. Chen, Y. L. Chen, J. P. Ju, C. H. Chao, Y. P. Lin, Y. M. Kuo, P. C. Tang, and Y. P. Lee. 2006. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66:1274-1283. Sinha, B., D. Koster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R. V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R. G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy. 2011. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402-413. Sirotkin, A. V. 2010. Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. J. Exp. Biol. 213:2125-2130. Star, L., B. Kemp, I. van den Anker, and H. K. Parmentier. 2008. Effect of single or combined climatic and hygienic stress in four layer lines: 1. Performance. Poult. Sci. 87:1022-1030. Stricher, F., C. Macri, M. Ruff, and S. Muller. 2013. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9: 1937-1954. Sugiura, K., F. L. Pendola, and J. J. Eppig. 2005. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279:20-30. Sun, C., and S. Zhang. 2015. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 7:8818-8829. Tafoya, M. A., J. Y. Chen, R. L. Stewart, Jr., and P. S. Lapolt. 2004. Activation of soluble guanylyl cyclase inhibits estradiol production and cyclic AMP accumulation from cultured rat granulosa cells. Fertil. Steril. 82 Suppl. 3:1154-1159. Taguchi, T., and M. S. Razzaque. 2007. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol. Med. 13:45-53. Tan, T. Q., C. Ge, Y. Mi, Y. Jin, and C. Zhang. 2010. Ginsenosides promote proliferation of granulosa cells from chicken prehierarchical follicles through PKC activation and up-regulated cyclin gene expression. Cell Biol. Int. 34:769-775. Teltathum, T., and S. Mekchay. 2009. Proteome changes in Thai indigenous chicken muscle during growth period. Int. J. Biol. Sci. 5:679-685. Thomas, C. M., and E. J. Smart. 2008. Caveolae structure and function. J. Cell Mol. Med. 12:796-809. Tissieres, A., H. K. Mitchell, and U. M. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84:389-398. Tu, W. L., C. Y. Cheng, S. H. Wang, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, S. E. Chen, and S. Y. Huang. 2016. Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Theriogenology 85:483-494. Tufo, G., A. W. Jones, Z. Wang, J. Hamelin, N. Tajeddine, D. D. Esposti, C. Martel, C. Boursier, C. Gallerne, C. Migdal, C. Lemaire, G. Szabadkai, A. Lemoine, G. Kroemer, and C. Brenner. 2014. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ. 21:685-695. Upadhyay, R. D., N. H. Balasinor, A. V. Kumar, G. Sachdeva, P. Parte, and K. Dumasia. 2013. Proteomics in reproductive biology: beacon for unraveling the molecular complexities. Biochim. Biophys. Acta 1834:8-15. van Miert, A. S. 1995. Pro-inflammatory cytokines in a ruminant model: pathophysiological, pharmacological, and therapeutic aspects. Vet. Q. 17:41-50. Van Nassauw, L., M. Callebaut, F. Harrisson, and D. W. Scheuermann. 1992. Smooth muscle cells in the walls of ovarian follicles in the Japanese quail. Cell Tissue Res. 269:49-56. Van Nassauw, L., S. U. Sys, F. Harrisson, and M. Callebaut. 1993. In vitro study of the contractility of the wall of the preovulatory follicle in the Japanese quail. Biol. Reprod. 49:359-364. Wang, L., Y. F. Zhu, X. J. Guo, R. Huo, X. Ma, M. Lin, Z. M. Zhou, and J. H. Sha. 2005. A two-dimensional electrophoresis reference map of human ovary. J. Mol. Med. (Berl.) 83:812-821. Wang, S. C., and J. M. Bahr. 1983. Estradiol secretion by theca cells of the domestic hen during the ovulatory cycle. Biol. Reprod. 28:618-624. Wang, S. H., C. Y. Cheng, C. J. Chen, H. H. Chen, P. C. Tang, C. F. Chen, Y. P. Lee, and S. Y. Huang. 2014. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology 82:80-94. Wang, S. H., C. Y. Cheng, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, and S. Y. Huang. 2013. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology 79:374-382 e371-377. Wang, S. H., C. Y. Cheng, P. C. Tang, C. F. Chen, H. H. Chen, Y. P. Lee, and S. Y. Huang. 2015. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One 10:e0125816. Woessner, J. F., Jr. 1998. Role of matrix proteases in processing enamel proteins. Connect Tissue Res. 39:69-73; discussion 141-149. Wolfenson, D., B. J. Lew, W. W. Thatcher, Y. Graber, and R. Meidan. 1997. Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim. Reprod. Sci. 47:9-19. Woods, D. C., and A. L. Johnson. 2005. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection. Biol. Reprod. 72:643-650. Xu, L., H. Peng, D. Wu, K. Hu, M. B. Goldring, B. R. Olsen, and Y. Li. 2005. Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. J. Biol. Chem. 280:548-555. Yen, T. T., D. T. Thao, and T. L. Thuoc. 2014. An overview on keratinocyte growth factor: from the molecular properties to clinical applications. Protein Pept. Lett. 21:306-317. Zhu, G., L. Kang, Q. Wei, X. Cui, S. Wang, Y. Chen, and Y. Jiang. 2014. Expression and regulation of MMP1, MMP3, and MMP9 in the chicken ovary in response to gonadotropins, sex hormones, and TGFB1. Biol. Reprod. 90:57.
熱緊迫使畜禽繁殖力下降,造成畜牧產業巨額經濟損失。成熟母禽卵巢內處於未進入排序階段的小黃濾泡(small yellow follicles, SYFs;6-8 mm)對濾泡發育與排序以及產蛋表現有關鍵性影響。為瞭解急性熱緊迫影響母雞產蛋的分子機制,本研究探討急性熱緊迫對台灣母土雞之生理指標及SYFs mRNA與蛋白質表現之效應,以期作為改善台灣土雞耐熱力之基礎。本研究使用30週齡國立中興大學育成之L2品系及B品系台灣土雞母雞進行功能性基因體調控之分析,並記錄急性熱緊迫前後之產蛋性狀變化。所有母雞於溫溼度環控氣候室(25°C)適應至少兩週,將母雞分為急性熱緊迫處理組及對照組(25°C),L2品系及B品系的急性熱緊迫處理組分別接受36°C 4小時及38°C 2小時熱處理,隨後於25°C恢復0、2及6小時,並於恢復期後採SYFs供後續分析。所有雞隻在熱處理或恢復期皆測量呼吸速率及體溫。母雞SYFs於熱緊迫處理後之mRNA及蛋白質表現差異分析以商業生產含44K基因之微陣列晶片及二維差異膠體電泳(two-dimensional difference gel electrophoresis, 2D-DIGE)進行。所有母雞之呼吸速率及體溫皆在熱處理開始短時間內顯著提高;不論是L2品系或是B品系母雞的產蛋率皆在急性熱緊迫後顯著下降而至一周後漸恢復。急性熱緊迫處理組L2品系及B品系母雞之SYFs分別有351及406個mRNA表現量顯著差異於對照組;L2品系及B品系母雞之SYFs在熱緊迫處理後分別有142及119個蛋白質表現量顯著差異。經胜肽質量指紋分析差異表現蛋白質可分別鑑定出93及76個蛋白質。基因功能分析結果顯示,上述差異表現的基因及蛋白質主要參與代謝過程、細胞過程(細胞骨架、脂質運輸)、生物調控(細胞凋亡調控、ATP合成調控)發育過程、緊迫反應及免疫反應等過程;急性熱緊迫顯著改變SYFs之熱緊迫蛋白質家族(HSP25、HSP47、HSP60、HSP70、HSC70、HSP90、HSPA8及HSPA9)、抗氧化物(PRDX1、3、4及6)及蛋黃合成相關蛋白質(VTG、VTG2、Apo A1及Apo B)之表現量。由本研究結果可知,急性熱緊迫可能改變台灣土雞SYFs內與細胞凋亡、過氧化物質傷害及蛋黃沉積速率相關mRNA及蛋白質表現而保護其免於細胞凋亡及過氧化物質傷害,然而,不論是L2品系或是B品系,其濾泡皆有可能因急性熱緊迫而發生閉鎖且產蛋率下降。

Heat stress causes the decline of fertility and results in enormous economic losses in farm animals. The small yellow follicles (SYF, 6-8 mm) are classified in a crucial pre-hierarchical stage related to the development of follicles, selection into the hierarchy, and laying performance. To understand the mechanisms of acute heat stress response on reproductive efficacy of hen, this study aimed to evaluate the effect of acute heat stress on SYFs of Taiwan country chickens (TCCs) through proteomic and genomic approaches. 30-wk-old hens of L2 strain and B strain TCCs selected in National Chung Hsing University were used to study the genomic regulation and the laying performances thereafter. After two weeks of adaption period (25°C), the L2 strain and B strain TCCs were subjected to acute heat stress of 36°C for 4 h and 38°C for 2 h, respectively. hens were then allowed recovery for 0, 2, and 6 h at 25°C. The respiratory rate and body temperature were recorded during the treatment and recovery periods. The control group was kept at 25°C. The mRNA and protein expressions in SYFs were evaluated with a chicken 44K oligo microarray and by two-dimensional difference gel electrophoresis (2D-DIGE). Results showed that the respiratory rate and body temperature increased significantly immediately after the treatment started. Laying rate was decreased significantly after acute heat stress in all hens. Totally 351 and 406 genes differed in transcript levels by heat stress groups in both strains of TCCs. 2D-DIGE analysis revealed that 142 and 119 protein spots were differentially affected by acute heat stress in SYFs of L2 strain and B strain TCCs. Peptide mass fingerprinting identified the differentially expressed protein spots belonging to 93 and 76 unique proteins. Gene ontology analysis indicated that these differentially expressed mRNAs and proteins were associated with biological processes of metabolic process, cellular process (cytoskeleton, lipids transports), biological regulation (regulation of apoptosis, regulation of ATP synthesis), developmental process, response to stimuli, and immune system process. Specifically, the expression of mRNA and protein of HSP family (HSP25, HSP47, HSP60, HSP70, HSC70, HSP90, HSPA8, and HSPA9), antioxidative defense (PRDX1, 3, 4, and 6), and egg yolk related proteins (VTG, VTG2, Apo A1, and Apo B) in SYFs of TCCs were significantly changed after acute heat stress, suggesting a protective mechanism of SYFs against damages caused by acute heat stress. In conclusion, acute heat stress resulted in differentially expressions of mRNA and proteins related to the responses to stimuli, metabolic processes and the cargo lipid for yolk deposition of SYFs to protect them from oxidative insults and death in TCCs. However, acute heat stress decrease laying rate in both strains of TCCs and might be attributed to follicular atresia.
Rights: 同意授權瀏覽/列印電子全文服務,2020-07-24起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-8099037002-1.pdf3.22 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.