Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96555
標題: 飼料中添加厚朴對白肉種雞先天免疫之影響
Effect of Magnolia officinalis bark extracts on the innate immunity of broiler breeder hens
作者: 林珮祺
Pei-Chi Lin
關鍵字: 厚朴;呼吸爆發;吞噬作用;先天免疫;白肉種母雞;Magnoliae;respiratory burst;phagocytosis;innate immunit;broiler breeder hens
引用: 吳和光。2001。台灣的家禽事業與家禽品種。畜牧要覽家禽篇增修二版。中國畜牧學會。台北市。 李良玉、王固龍、况慧星、郭謨、呂良臣、張直。1978。家禽生理學。藝軒圖書出版社。台北市。 李良玉、况慧星、徐錦和。1977。家禽組織學。藝軒圖書出版社。台北市。 陳敦芳。1983。台灣的肉種雞飼養業概況。台灣的養雞事業。現代畜殖雜誌社。台北市。 劉祖誠。2009。過度餵飼引發白肉種雞與台灣土雞產蛋性能低落-免疫細胞異嗜球相關功能之探討。碩士論文。中興大學。台中市。 Akira, S., S. Uematsu, and O. Takeuch. 2006. Pathogen recognition and innate immunity. Cell. 124: 783-801. Anderson, R. A. 2008. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc. Nutr. Soc. 67: 48-53. Antuna-Puente, B., B. Feve, S. Fellahi, and J. P. Bastard. 2008. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 34: 2-11. Ashley, N. T., Z. M. Weil, and R. J. Nelson. 2012. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst. 43: 385-406. Babior, B. M. 1983. The respiratory burst of phagocytes. J. Clin. Invest. 73: 599-601. Babior, B. M. 1999. NADPH oxidase: an update. Blood. 93: 1464-1476. Babior, B. M., J. D. Lambeth, and W. Nauseef. 2002. The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397: 342-344. Bang, K. H., Y. K. Kim, B. S. Min, M. K. Na, Y. H. Rhee, J. P. Lee, and K. H. Bea. 2000. Antifungal activity of magnolol and honokiol. Arch. Pharm. Res. 23: 46-49. Chandra, R. K. 1981. Immune response in overnutrition. Cancer Res. 41: 3795-3796. Cheema, M. A., M. A. Qureshi, and G. B. Havenstein. 2003. A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82: 1519-1529. Chen, J. S., Y. L. Chen, A. S. Greenberg, Y. J. Chen, and S. M. Wang. 2005. Magnolol stimulates lipolysis in lipid-laden RAW 264.7 macrophages. J. Cell. Biochem. 94: 1028-1037. Chen, J. S., Y. L. Chen, A. S. Greenberg, Y. J. Chen, and S.M. Wang. 2005. Magnolol stimulates lipolysis in lipid-laden RAW 264.7 macrophages. J. Cell. Biochem. 94: 1028-1037. Chen, Y. H., P. H. Huang, F. Y. Lin, W. C. Chen, Y. L. Chen, W. H. Yin, K. M. Man, and P. L. Liu. 2011. Magnolol: A multifunctional compound isolated from the Chinese medicinal plant Magnolia officinalis. Eur. J. Integr. Med. 3: 317-324. Chiang, S. H., M. Bazuine, C. N. Lumeng, L. M. Geletka, J. Mowers, N. M. White, J. T. Ma, J. Zhou, N. Qi, D. Westcott, J. B. Delproposto, T. S. Blackwell, F. E. Yull, and A. R. Saltiel. 2009. Cell. 138: 961-975. Cho, S., Y. Choi, S. Park, and T. Park. 2012. Carvacrol prevents dietinduced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J. Nutr. Biochem. 23: 191-201. Chuammitri, P., S. B. Redmond, K. Kimura, C. B. Andreasen, S. J. Lamontb, and D. Pali´c. 2011. Heterophil functional responses to dietary immunomodulators vary in genetically distinct chicken lines. Vet. Immunol. Immunopathol. 142: 219-227. Dahlgren, C., and A. Karlsson. 1999. Respiratory burst in human neutrophils. J. Immunol. Methods. 232: 3-14. El Benna, J., P. M. Dang, and M. Gougerot-Pocidalo. 2008. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 30: 279-289. Erickson, R. W., S. E. Malawista, M. C. Garrett, G. Van Blaricom, L. T. Leto, and J. T. Curnutte. 1992. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component. J. Clin. Invest. 89: 1587-1595. Flannagan, R. S., V. Jaumouill´e, and S. Grinstein. 2012. The cell biology of phagocytosis. Annu. Rev. Pathol. 7: 61-98. Forman, H. J., and M. Torres. 2002. Reactive Oxygen Species and Cell Signaling. Am. J. Respir. Crit. Care Med. 166: S4-S8. Galley, H. F., and N. R. Webster. 1996. The immuno-inflammatory cascade. Br. J. Anaesth. 77: 11-16. Geiszt, M., and T. L. Leto. 2004. The Nox family of NAD(P)H oxidases: host defense and beyond. J. Biol. Chem. 279: 51715-51718. Genovese, K. J., H. He, C. L. Swaggerty, and M. H. Kogut. 2013. The avian heterophil. Dev. Comp. Immunol. 41: 334-340. Harmon, B. G. 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci. 77: 972-977. Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82: 1500-1508. Hawley, H. P., and G. B. Gordon. 1976. The effects of long chain free fatty acids on human neutrophil function and structure. Lab. Invest. 34: 216-222. Heredia, F. P., S. G. Martı´nez, and A. Marcos. 2012. Chronic and degenerative diseases: obesity, inflammation and the immune system. Proc. Nutr. Soc. 71: 332-338. Horan, T. D., D. English, and T. A. McPherson. 1982. Association of neutrophil chemiluminescence with microbicidal activity. Clin. Immunol. Immunopathol. 22: 259-269. Inoguchi, T., P. Li, F. Umeda, H. Y. Yu, M. Kakimoto, M. Imamura, T. Aoki, T. Etoh, T. Hashimoto, M. Naruse, H. Sano, H. Utsumi, and H. Nawata. 2000. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 49: 1939-1945. Inoue, S., Y. Lan, J. Muran, and M. Tsuji. 1996. Reduced hydrogen peroxide production in neutrophils from patients with diabetes. Diabetes Res. Clin. Pract. 33: 119-127. Ito, K., T. Iida, K. Ichino, M. Tsunezuka, M. Hattori, and T. Namba. 1982. Obovatol and obovatal, novel biphenyl ether lignans from the leaves of Magnolia obovate. Thunb. Chem. Pharm. Bull. 30: 3347-3353. Jo, J., O. Gavrilova, S. Pack, W. Jou, S. Mullen, A. E. Sumner, S. W. Cushman, and V. Periwal. 2009. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS. Comput. Biol. 5: e1000324. Julian, R. J. 1998. Rapid growth problems: Ascites and skeletal deformities in broilers. Poult. Sci. 77: 1773–1780. Kim, H. M., S. J. Bae, D. W. Kim, B. K. Kim, S. B. Lee, U. S. Lee, C. H. Kim, and S. K. Moon. 2007. Inhibitory role of magnolol on proliferative capacity and matrix metalloproteinase-9 expression in TNF-α-induced vascular smooth muscle cells. Int. Immunopharmacol. 7: 1083-1091. Kim, Y. J., M. S. Choi, B. Y. Cha, J. T. Woo, Y. B. Park, S. R. Kim, and U. J. Jung. 2013. Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol. Nutr. Food Res. 57: 1988-1998. Klasing, K.C. 1991. Avian inflammatory response: mediation by macrophages. Poult. Sci. 70: 1176-1186. Koerner, A., J. Kratzsch, and W. Kiess. 2005. Adipocytokines: leptin--the classical, resistin - the controversical, adiponectin - the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19: 525-546. Lai, C. S., Y. S. Lai, D. H. Kuo, C. H. Wu, C. T. Ho, and M. H. Pan. 2011. Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways. J. Funct. Foods. 3: 198-206. Lee, Y. J., Y. M. Lee, C. K. Lee, J. K. Jung, S. B. Han, and J. T. Hong. 2011. Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 130: 157-176. Lehmann, A. K., S. S?rnes, and A. Halstensen. 2000. Phagocytosis: measurement by flow cytometry. J. Immunol. Methods. 243: 229-242. Liou, K. T., Y. C. Shen, C. F. Chen, C. M. Tsao, and S.K. Tsai. 2003. The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production. Eur. J. Pharmacol. 475: 19-27. Marhoffer, W., M. Stein, E. Maeser, and K. Federlin. 1992. Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care. 15: 256-260. Martí, A., A. Marcos, and J. A. Martínez. 2001. Obesity and immune function relationships. Obes. Rev. 2: 131-140. Matsuda, H., T. Kageura, M. Oda, T. Morikawa, Y. Sakamoto, and M. Yoshikawa. 2001. Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem. Pharm. Bull (Tokyo). 49: 716-720. Meric, J. B., S. Rottey, K. Olaussen, J. C. Soria, D. Khayat, O. Rixe, and J. P. Spano. 2006. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol. 59: 51-64. Mérica, J. B.,S. Rotteya, K. Olaussenb, J. C. Soriac, D. Khayata, O. Rixea, and J. P. Spanoa. 2006. Cyclooxygenase-2 as a target for anticancer drug development. Crit. Rev. Oncol. Hematol. 59: 51-64. Min, B. S. 2008. Anti-complement activity of phenolic compounds from the stem bark of Magnolia obovata. Nat. Prod. Sci. 14: 196-201. Nathan, C. 2002. Points of control in inflammation. Nature. 420: 846-852. Nielson, C. P., and D. A. Hindson .1989. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes. 38: 1031-1035. Oh, J. H., L. L. Kang, J. O. Ban, Y. H. Kim, K. H. Kim, S. B. Han, and J. T. Hong. 2009. Anti-inflammatory effect of 4-O-methylhonokiol, a novel compound isolated from Magnolia officinalis through inhibition of NF-kappaB. Chem. Biol. Interact. 180: 506-514. Ohshima, H., and H. Bartsch. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305: 253-264. O'Rourke, R. W., T. Kay, E. A. Lyle, S. A. Traxler, C. W. Deveney, B. A. Jobe, C. T. Jr. Roberts, D. Marks, and J. T. Rosenbaum. 2006. Alterations in peripheral blood lymphocyte cytokine expression in obesity. Clin. Exp. Immunol. 146: 39-46. Pautz, A., J. Art, S. Hahn, S. Nowag, C. Voss, and H. Kleinert. 2010. Regulation of the expression of inducible nitric oxide synthase. Nitric oxide. 23: 75-93. Qureshi, M. A., C. L. Heggen, and I. Hussain. 2000. Avian macrophage: effector functions in health and disease. Dev. Comp. Immunol. 24: 103-119. Rauw, W. M., E. Kanis, E. N. Noordhuizen-Stassen, and F. J. Grommers. 1998. Undesirable side effects of selection for high production efficiency in farm animals: a review. Livest. Prod. Sci. 56: 15-33. Richards, M. P. 2003. Genetic regulation of feed intake and energy balance in poultry. Poult. Sci. 82: 907-916. Sacco, S.M., M. N. Horcajada, and E. Offord. 2013. Phytonutrients for bone health during ageing. Br. J. Clin. Pharmacol. 75: 697-707. Shen, C. C., C. L. Ni, Y. C. Shen, Y. L. Huang, C. H. Kuo, T. S. Wu, and C. C. Chen. 2009. Phenolic constituents from the stem bark of Magnolia officinalis. J. Nat. Prod. 72: 168-171. Steppan, C. M., S. T. Bailey, S. Bhat, E. J. Brown, R. R. Banerjee, C. M. Wright, H. R. Patel, R. S. Ahima, and M A. Lazar. 2001. The hormone resistin links obesity to diabetes. Nature. 409: 307-312. Stienstra, R., C. Duval, M. Muller, and S. Kersten. 2007. PPARs, obesity, and inflammation. PPAR. Res. 2007: 1-10. Tachikawa, E., M. Takahashi, and T. Kashimoto. 2000. Effects of extract and ingredients isolated from Magnolia obovata thunberg on catecholamine secretion from bovine adrenal chromaffin cells. Biochem. Pharmacol. 60: 433-440. Tilg, H., and A. R. Moschen. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6: 772-783. Trayhurn, P., and I. S. Wood. 2004. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92: 347-355. van Exel, E., J. Gussekloo, A. J. de Craen, M. Frölich, A. Bootsma-Van Der Wiel, and R. G. Westendorp. 2002. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes : the Leiden 85-Plus Study. Diabetes. 51: 1088-1092. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796-1808. Wellen, K. E., and G. S. Hotamisligil. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115: 1111-1119. Weyer, C., T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R. E. Pratley, and P. A. Tataranni. 2001. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935. Yahara, S., T. Nishiyori, A. Kohda, T. Nohara, and I. Nishioka. 1991. Isolation and characterization of phenolic compounds from Magnoliae cortex produced in China. Chem. Pharm. Bull. 39: 2024-2036. Zhou, H. Y., E. M. Shin, L. Y. Guo, U. J. Youn, K. Bae, S. S. Kang, L. B. Zou, and Y. S. Kim. 2008. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur. J. Pharmacol. 586: 340-349. Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93: 2970-2982.
摘要: 
厚朴粉為源自於木蘭科植物之中草藥,其運用於傳統中藥已有數千年,在體外試驗中,厚朴能有效治療發炎性疾病。經選拔為快速生長且肌肉量提升之現代商業白肉雞,無法適當調節採食量以達能量平衡,當給予充分飼糧時,白肉雞會過度採食而導致脂肪過量堆積,造成家禽易於肥胖與其他健康相關問題,而現今普遍認為肥胖屬於一種低度慢性發炎的狀態。本次試驗探討厚朴粉作為飼料添加劑對白肉種雞先天免疫之影響,試驗雞隻分為四組以進行餵飼試驗16週,分別為限飼組 (R)、任飼組 (Ad)、任飼添加0.1%與0.4%厚朴組。此外,厚朴酚為厚朴中主要的酚類組成,體外試驗中將探討厚朴酚對單核球與異嗜球功能之影響。結果顯示:飼料中添加厚朴對任飼白肉種雞體重無明顯影響,且血漿中葡萄糖、三酸甘油酯與膽固醇含量亦無顯著差異。當試驗達6~8週時,限飼組之單核球與異嗜球呼吸爆發高於任飼組 (P<0.05)。15~16週時,任飼添加0.1%與0.4%厚朴組之呼吸爆發高於任飼組 (P<0.05),且任飼添加0.4%厚朴組比任飼添加0.1%厚朴組具有較高的異嗜球呼吸爆發反應 (P<0.05)。餵飼試驗中各組別間之吞噬作用則無差異。體外試驗中,不同劑量厚朴酚處理下皆會促進單核球呼吸爆發,然而低劑量 (5 μM) 厚朴酚會促進異嗜球呼吸爆發,但在高劑量 (20 μM) 下則具有抑制作用。外源性厚朴酚處理對此兩種細胞類型之吞噬作用無顯著影響。厚朴酚會抑制由高劑量棕櫚酸及葡萄糖誘發的單核球與異嗜球呼吸爆發 (P<0.05),但對吞噬作用無顯著影響。此外,高劑量棕櫚酸及葡萄糖會抑制單核球與異嗜球釋放IL-1β,而厚朴酚會增加其IL-1β表現量。總結來說,飼糧中長期補充厚朴能夠增加過度採食白肉種雞之呼吸爆發活性。而在體外試驗中,適當的厚朴酚濃度會促進異嗜球與單核球呼吸爆發,但會抑制由高劑量棕櫚酸與葡萄糖共同誘發的呼吸爆發反應。此外,厚朴酚會提升高劑量棕櫚酸及葡萄糖抑制的IL-1β表現。這些結果顯示,厚朴有潛力作為替代的飼料添加物以改善白肉種雞之先天免疫功能。

Magnoliae powder is an herbal material from M. officinalis and has been used in traditional Chinese medicine for hundreds of years. In clinical studies, Magnoliae is effective remedy to treat inflammatory diseases. The modern commercial broilers, selected for rapid growth and enhanced muscle mass, do not adequately regulate voluntary feed intake to achieve energy balance. When given unrestricted access to feed, broilers exhibit hyperphagia leading to an excessive accumulation of fat, making these birds prone to obesity and related disorders. It is now widely agreed that obesity is also a state of low-grade chronic inflammation. The study was designed to examine the effect of Magnoliae powder as a feed additive on the innate immune functions of broiler breeder hens. Hens were divided into 4 groups, feed restriction (R), ad libitum (Ad), ad libitum with 0.1% Magnoliae and 0.4% Magnoliae for a feeding trial up to 16 weeks. In addition, the effect of pure magnolol, a major phenolic constituent of M. officinalis on the functions of monocytes and heterophils in vitro was examined. Results showed that there were no significant differences in body weight among the three groups of ad libitum during the 16-wk feeding period. We also found that Magnoliae supplementation did not significantly affect the plasma glucose, triglyceride, and cholesterol among groups. Respiratory burst of monocytes and heterophils of R-hens were higher than those of Ad-hens during 6 and 8 weeks of the trail (P<0.05). Ad+0.1% Magnoliae and 0.4% Magnoliae group exhibited higher respiratory burst than Ad-hens (P<0.05), and Ad+0.4% Magnoliae group had higher heterophil respiratory burst response than Ad+0.1% Magnoliae group during 15 and 16 weeks (P<0.05). No differences in phagocytosis were observed among groups throughout the feeding trial. In culture studies, magnolol treatment promoted monocyte respiratory burst at various levels, whereas heterophil respiratory burst was promoted at lower doses (5 μM) of magnolol but suppressed at the high dose (20 μM). No significant effects of exogenous magnolol treatment on phagocytosis were observed in both cell types. Magnolol also suppressed respiratory burst of monocytes and heterophils induced by high dose of palmitic acid and glucose (P<0.05), but had no significant effects on phagocytosis. In addition, magnolol ameliorated IL-1β secretion of monocytes and heterophils suppressed by high dose of palmitic acid and glucose (P<0.05). In conclusion, long term supplementation of Magnoliae enhanced respiratory burst activity in overfed broiler breeders. Optimal magnolol concentrations promoted heterophil and monocyte respiratory burst in vitro, but suppressed respiratory burst response induced by high dose of palmitic acid and glucose. Besides, magnolol ameliorated the suppression of IL-1β production of monocytes and heterophils s by high dose of palmitic acid and glucose. These results suggested Magnoliae as a potential alternative feed additive to modulate innate immune functions of broiler breeders, an obesity-prone strain of chickens.
URI: http://hdl.handle.net/11455/96555
Rights: 同意授權瀏覽/列印電子全文服務,2019-08-14起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7103037019-1.pdf2.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.