Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96568
標題: 估計中國懸浮微粒2.5對人體健影響: 門檻模型的應用
Estimating the Health Effects of PM2.5 in China: A Panel Threshold Model Approach
作者: 陳寶玲
Bao–Linh Tran
關鍵字: 空氣污染;煤消費量;人口加權的懸浮微粒2.5;心臟病死亡率;呼吸系統疾病死亡率;門檻模型;Air pollution;Coal consumption;Population-weighted PM_2.5 exposure;Heart disease mortality;Respiratory mortality;Panel Threshold model
引用: Anenberg, S. C., Horowitz, L. W., Tong, D. Q., & West, J. J. (2010). An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environmental health perspectives, 118(9), 1189. Bao, J., Yang, X., Zhao, Z., Wang, Z., Yu, C., & Li, X. (2015). The Spatial-Temporal Characteristics of Air Pollution in China from 2001–2014. International journal of environmental research and public health, 12(12), 15875-15887. Beelen, R., Hoek, G., van Den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., ... & Brunekreef, B. (2008). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environmental health perspectives, 116(2), 196. Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V., Dentener, F., ... & Balakrishnan, K. (2015). Ambient air pollution exposure estimation for the Global Burden of Disease 2013. Environmental science & technology, 50(1), 79-88. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., ... & Tager, I. (2004). Air pollution and cardiovascular disease A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation, 109(21), 2655-267. Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., ... & Peters, A. (2010). Particulate matter air pollution and cardiovascular disease. Circulation, 121(21), 2331-2378. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The lancet, 360(9341), 1233-1242. Chen, G., Song, G., Jiang, L., Zhang, Y., Zhao, N., Chen, B., & Kan, H. (2008). Short-term effects of ambient gaseous pollutants and particulate matter on daily mortality in Shanghai, China. Journal of occupational health, 50(1), 41-47. Chiu, H. F., Tsai, S. S., Weng, H. H., & Yang, C. Y. (2013). Short-term effects of fine particulate air pollution on emergency room visits for cardiac arrhythmias: A case-crossover study in Taipei. Journal of Toxicology and Environmental Health, Part A, 76(10), 614-623. Crouse, D. L., Peters, P. A., van Donkelaar, A., Goldberg, M. S., Villeneuve, P. J., Brion, O., ... & Brauer, M. (2012). Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environmental health perspectives, 120(5), 708. Dan, M., Zhuang, G., Li, X., Tao, H., & Zhuang, Y. (2004). The characteristics of carbonaceous species and their sources in PM2. 5 in Beijing. Atmospheric Environment, 38(21), 3443-3452. Daniels, M. J., Dominici. F., Samet, J. M., & Zegar, S. L. (2000). Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. American journal of epimiology, 152(5), 397-406. Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM 2.5 to climate in the Eastern US: a modeling case study. Atmospheric chemistry and physics, 7(16), 4295-4309. Dong, G. H., Zhang, P., Sun, B., Zhang, L., Chen, X., Ma, N., ... & Tang, N. (2012). Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study. Respiration, 84(5), 360-368. Elizabeth C. Economy. 'China's Environmental Challenge: Political, Social and Economic Implications'. Council on Foreign Relation. January 27, 2003. Filleul, L., Rondeau, V., Vandentorren, S., Le Moual, N., Cantagrel, A., Annesi-Maesano, I., ... & Vervloet, D. (2005). Twenty five year mortality and air pollution: results from the French PAARC survey. Occupational and Environmental Medicine, 62(7), 453-460. Finley, M. (2013). BP statistical review of world energy. 2013)[2015-03]. http://www, bp. com. Franklin, M., Zeka, A., & Schwartz, J. (2007). Association between PM2. 5 and all-cause and specific-cause mortality in 27 US communities. Journal of Exposure Science and Environmental Epidemiology, 17(3), 279-287. GBD MAPS Working Group. (2016). Burden of disease attributable to coal-burning and other major sources of air pollution in China. Special report, 20. Gillies, J. A., Etyemezian, V., Kuhns, H., Nikolic, D., & Gillette, D. A. (2005). Effect of vehicle characteristics on unpaved road dust emissions. Atmospheric Environment, 39(13), 2341-2347. Guan, D., Su, X., Zhang, Q., Peters, G. P., Liu, Z., Lei, Y., & He, K. (2014). The socioeconomic drivers of China's primary PM2. 5 emissions. Environmental Research Letters, 9(2), 024010. Guo, Y., Barnett, A. G., Zhang, Y., Tong, S., Yu, W., & Pan, X. (2010). The short-term effect of air pollution on cardiovascular mortality in Tianjin, China: Comparison of time series and case–crossover analyses. Science of the Total Environment, 409(2), 300-306. Gupta, A. K., Karar, K., & Srivastava, A. (2007). Chemical mass balance source apportionment of PM 10 and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of hazardous materials, 142(1), 279-287. Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of econometrics, 93(2), 345-368. Hsu A., 2012 'Seeing China's pollution from space', China Dialogue. February 20. Hwang, S. L., Guo, S. E., Chi, M. C., Chou, C. T., Lin, Y. C., Lin, C. M., & Chou, Y. L. (2016). Association between atmospheric fine particulate matter and hospital admissions for chronic obstructive pulmonary disease in Southwestern Taiwan: a population-based study. International journal of environmental research and public health, 13(4), 366. Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., Zhao, N., ... & Chen, B. (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environment international, 33(3), 376-384. Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., Zhao, N., ... & Chen, B. (2008). Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. Environmental health perspectives, 116(9), 1183. Kan, H., Wong, C. M., Vichit-Vadakan, N., & Qian, Z. (2010). Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environmental research, 110(3), 258-264. Kuhns, H., Gillies, J., Etyemezian, V., Nikolich, G., King, J., Zhu, D., ... & Kohl, S. (2010). Effect of soil type and momentum on unpaved road particulate matter emissions from wheeled and tracked vehicles. Aerosol Science and Technology, 44(3), 187-196. Luan Dong (2015). Capping coal consumption and reduce carbon emission in China's industrial sector. China Coal Cap Project. Natural Resources Defense Council. Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R. V., Brauer, M., ... & Frostad, J. (2017). Impacts of coal burning on ambient PM 2.5 pollution in China. Atmospheric Chemistry and Physics, 17(7), 4477-4491. Ma, Y., Chen, R., Pan, G., Xu, X., Song, W., Chen, B., & Kan, H. (2011). Fine particulate air pollution and daily mortality in Shenyang, China. Science of the Total Environment, 409(13), 2473-2477. Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., ... & Liu, Y. (2016). Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 2004-2013. Environmental Health Perspectives (Online), 124(2), 184. National Research Council. (2005). Urbanization, Energy, and Air Pollution in China: The Challenges Ahead--Proceedings of a Symposium. National Academies Press. Neas, L. M., Dockery, D. W., Ware, J. H., Spengler, J. D., Ferris, B. G., & Speizer, F. E. (1994). Concentration of indoor particulate matter as a determinant of respiratory health in children. American Journal of Epidemiology, 139(11), 1088-1099. Pope III, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine,360(4), 376-386. Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141. Pope, C. A., Burnett, R. T., Krewski, D., Jerrett, M., Shi, Y., Calle, E. E., & Thun, M. J. (2009). Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke. Circulation, 120(11), 941-948. Qian, Z., He, Q., Lin, H. M., Kong, L., Liao, D., Dan, J., ... & Wang, B. (2007). Association of daily cause-specific mortality with ambient particle air pollution in Wuhan, China. Environmental research, 105(3), 380-389. Rohde, R. A., & Muller, R. A. (2015). Air pollution in China: Mapping of concentrations and sources. PloS one, 10(8), e0135749. Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New England journal of medicine, 343(24), 1742-1749. Samoli, E., Aga, E., Touloumi, G., Nisiotis, K., Forsberg, B., Lefranc, A., ... & Brunstein, R. (2006). Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. European Respiratory Journal, 27(6), 1129-1138. Schlesinger, R. B., Kunzli, N., Hidy, G. M., Gotschi, T., & Jerrett, M. (2006). The health relevance of ambient particulate matter characteristics: coherence of toxicological and epidemiological inferences. Inhalation toxicology, 18(2), 95-125. Schwartz, J., Laden, F., & Zanobetti, A. (2002). The concentration-response relation between PM (2.5) and daily deaths. Environmental health perspectives, 110(10), 1025. Shang, Y., Sun, Z., Cao, J., Wang, X., Zhong, L., Bi, X., ... & Huang, W. (2013). Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environment international, 54, 100-111. Shima, M., & Adachi, M. (2000). Effect of outdoor and indoor nitrogen dioxide on respiratory symptoms in schoolchildren. International journal of epidemiology, 29(5), 862-870.. Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J. F., Shindell, D. T., ... & Horowitz, L. W. (2013). Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 8(3), 034005. Slaughter, J. C., Lumley, T., Sheppard, L., Koenig, J. Q., & Shapiro, G. G. (2003). Effects of ambient air pollution on symptom severity and medication use in children with asthma. Annals of Allergy, Asthma & Immunology, 91(4), 346-353. Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L. G., ... & Slanina, S. (2006). Source apportionment of PM2. 5 in Beijing by positive matrix factorization. Atmospheric Environment, 40(8), 1526-1537. Tai, A. P., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM 2.5) and meteorological variables in the United States: Implications for the sensitivity of PM 2.5 to climate change. Atmospheric Environment, 44(32), 3976-3984. Thurston, G. D., Burnett, R. T., Turner, M. C., Shi, Y., Krewski, D., Lall, R., ... & Pope III, C. A. (2016). Ischemic heart disease mortality and long-term exposure to source-related components of US fine particle air pollution. Environmental Health Perspectives (Online), 124(6), 785. Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4), 339-362. Venkatram, A., Fitz, D., Bumiller, K., Du, S., Boeck, M., & Ganguly, C. (1999). Using a dispersion model to estimate emission rates of particulate matter from paved roads. Atmospheric Environment, 33(7), 1093-1102. Venners, S. A., Wang, B., Xu, Z., Schlatter, Y., Wang, L., & Xu, X. (2003). Particulate matter, sulfur dioxide, and daily mortality in Chongqing, China. Environmental health perspectives, 111(4), 562. Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan. International journal of environmental research and public health, 12(8), 9089-9101. Wang, L., Zhang, P., Tan, S., Zhao, X., Cheng, D., Wei, W., ... & Pan, X. (2013). Assessment of urban air quality in China using air pollution indices (APIs). Journal of the Air & Waste Management Association, 63(2), 170-178. Watson, J. G., Chow, J. C., Lowenthal, D. H., Robinson, N. F., Cahill, C. F., & Blumenthal, D. L. (2002). Simulating changes in source profiles from coal-fired power stations: Use in chemical mass balance of PM2. 5 in the Mount Zirkel Wilderness. Energy & Fuels, 16(2), 311-324. Westerdahl, D., Wang, X., Pan, X., & Zhang, K. M. (2009). Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environment, 43(3), 697-705. Xu, X., Gao, J., Gao, J., & Chen, Y. (1994). Air pollution and daily mortality in residential areas of Beijing, China. Archives of Environmental Health: An International Journal, 49(4), 216-222. Xu, Z., Yu, D., Jing, L., & Xu, X. (2000). Air pollution and daily mortality in Shenyang, China. Archives of Environmental Health: An International Journal,55(2), 115-120. Yang, C., Peng, X., Huang, W., Chen, R., Xu, Z., Chen, B., & Kan, H. (2012). A time-stratified case-crossover study of fine particulate matter air pollution and mortality in Guangzhou, China. International archives of occupational and environmental health, 85(5), 579-585. Yao, L., & Lu, N. (2014). Particulate matter pollution and population exposure assessment over Mainland China in 2010 with remote sensing. International journal of environmental research and public health, 11(5), 5241-5250. Yu, H. L., & Chien, L. C. (2016). Short-term population-based non-linear concentration–response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis. Journal of Exposure Science and Environmental Epidemiology, 26(2), 197-206. Zhang, P., Dong, G., Sun, B., Zhang, L., Chen, X., Ma, N., ... & Tang, N. (2011). Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One, 6(6), e20827. Zhang, Y. L., & Cao, F. (2015). Fine particulate matter (PM2. 5) in China at a city level. Scientific reports, 5, 14884. Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., & Cass, G. R. (2005). Seasonal trends in PM2. 5 source contributions in Beijing, China. Atmospheric Environment, 39(22), 3967-3976.
摘要: 
本研究利用2004-2010年中國30個省份的縱橫資料,基於懸浮微粒2.5(PM_2.5.)的多門檻效果,闡明了化石燃料消費對健康的影響。我們首先估計煤消費量與PM_2.5 的因果關係。 結果表明,1%的煤炭消費量增加會導致人口加權的懸浮微粒2.5暴露增加0.23%。接著我們探討PM_2.5.與各種原因下的死亡率之間的統計學關係,發現PM_2.5對健康的影響有三個門檻值。
例如,我們發現當人口加權的懸浮微粒2.5暴露增加1%時,人們因心臟病而死的死亡率增加程度不同。在PM_2.5暴露低於26.2μg/m^3, 介於26.2μg/m^3〜34.27μg/m^3,介於34.27μg/m^3〜44.76μg/m^3, 以及44.76μg/m^3 以上時,死亡率分別增加0.25%, 0.42%, 0.53% 及 0.40%。
在呼吸系統疾病方面,當人口加權的懸浮微粒2.5暴露增加1%時,人們因呼吸系統疾病而死的死亡率增加程度也不同。在PM_2.5暴露低於37.95μg/m^3, 介於37.95μg/m^3〜38.06μg/m^3,介於38.06μg/m^3〜48.53μg/m^3, 以及48.53μg/m^3 以上時,死亡率分別增加0.38%, 0.97%, 0.57% 及 0.39%。
結合以上兩個步驟,我們發現,若是PM_2.5暴露高於34.27μg/m^3 (or 37.95 μg/m^3),當煤炭消費量增加1%時,心臟病(或呼吸系統疾病)的死亡率將增加0.12%(或0.19%)。
我們還發現其他空氣污染物與公共衛生之間的重要關係,例如NO_2增加1%,心臟病死亡率和呼吸系統疾病死亡率分別會增加0.31%及0.33%; 而NO_2增加1%,心髒病死亡率和呼吸系統疾病死亡率分別會增加0.10%及0.42%。研究結果讓我們對於空氣污染造成相疾病關死亡情形更加瞭解,並可以在制定排放標準時進一步參考。另外我們發現,由於中國為了她在2008年舉辦的奧運提供更好的空氣品質,其2008年以後的PM_2.5比2008年以前低了14.5%。此外,氣象條件中,溫度和濕度與PM_2.5.呈正相關,而降水與PM_2.5呈負相關。

This study elucidates the health impacts from fossil fuel consumption based on multiple threshold effect of PM_2.5 in China, using panel data of 30 provinces in the period time 2004-2010. We conduct this by first estimating the causal relationship of coal consumption and PM_2.5. The result shows that a 1% coal consumption increase induces a 0.23% increase in population-weighted exposure to PM_2.5. We continue with developing a statistical relationship between PM_2.5 and cause-specific mortality which indicates that the health effects are dependent on the PM_2.5 range with triple threshold effect. For example, we find that increasing PM_2.5 causes mortality to increase when population-weighted PM_2.5 exposure is lower than 26.2 μg/m^3, between 26.2 and 34.27 μg/m^3, between 34.27 and 44.76 μg/m^3 and higher 44.76 μg/m^3, with the estimated increase in heart disease mortality being 0.25%, 0.42%, 0.53% and 0.40% when the population-weighted PM_2.5 exposure increases by 1%. In terms of respiratory diseases, the mortality increases by 0.38%, 0.97%, 0.57% and 0.39%, corresponded to 1% increase in population-weighted PM_2.5 exposure when PM_2.5 exposure is lower than 37.95 μg/m^3, between 37.95 and 38.06 μg/m^3, between 38.06 and 48.53 μg/m^3 or higher 48.53 μg/m^3, respectively. By combining these two steps, we find that the mortality in term of heart disease (or respiratory disease) will increase by 0.12% (or 0.19%) when the coal consumption increases by 1%, under the ranges of PM_2.5 exposure which is higher than 34.27 μg/m^3 (or 37.95 μg/m^3). Moreover, we also found significant relation between other air pollutants and public health, such as a 1% increase in NO_2 lead to 0.31% and 0.33% increase in heart disease mortality and respiratory, respectively; and a 1% SO_2 increase causes mortality of heart disease and respiratory disease increase by 0.10% and 0.42%, respectively. The findings of the study provide a better understanding of sources contributing to related-air pollution mortality and could be considered for further applications in setting emission standards.
In addition, we found that PM_2.5 in the period time 2009-2010 is lower than previous period about 14.5% owing to China's efforts to provide better air quality for 2008 Olympic Games. This study also found that meteorological conditions including temperature and humidity are positively correlated with PM_2.5 while precipitation and PM_2.5 has a negative correlation.
URI: http://hdl.handle.net/11455/96568
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-17起公開。
Appears in Collections:國際農學碩士學位學程

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104030510-1.pdf1.23 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.