Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorShaw-Yhi Hwangen_US
dc.identifier.citationBarbour, J.D., R.R. Farrar, and G.G. Kennedy. 1993. Interaction of Manduca sexta resistance in tomato with insect predators of Helicoverpa zea. Entomol. Exp. Appl. 68(2): 143–155. Bedinger, P.A., R.T. Chetelat, B. Mcclure, L.C. Moyle, J.K.C. Rose, S.M. Stack, E.V.D. Knaap, Y.S. Baek, G. Lopez-Casado, P.A. Covey, A. Kumar, W. Li, R. Nunez, F. Cruz-Garcia, and S. Royer. 2010. Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex. Plant Reprod. 24(3): 171–187. Ben-Israel, I., G. Yu, M.B. Austin, N. Bhuiyan, M. Auldridge, T. Nguyen, I. Schauvinhold, J.P. Noel, E. Pichersky, and E. Fridman. 2009. Multiple Biochemical and Morphological Factors Underlie the Production of Methylketones in Tomato Trichomes. Plant Physiol. 151(4): 1952–1964. Bergau, N., S. Bennewitz, F. Syrowatka, G. Hause, and A. Tissier. 2015. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol. 15(1). Bergau, N., A.N. Santos, A. Henning, G.U. Balcke, and A. Tissier. 2016. Autofluorescence as a Signal to Sort Developing Glandular Trichomes by Flow Cytometry. Front. Recent Dev. Plant Sci. 7. Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 32(1): 170–189. Blauth, S.L., G.A. Churchill, and M.A. Mutschler. 1998. Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor. Appl. Genet. 96(3-4): 458–467. Camara, J., V. Logah, E.A. Osekre, and C. Kwoseh. 2017. Leaf nutrients content of tomato and incidence of insect pests and diseases following two foliar applications. J. Plant Nutr. Celik, I., N. Gurbuz, A.T. Uncu, A. Frary, and S. Doganlar. 2017. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of Solanum pimpinellifolium using genotyping by sequencing. BMC Genomics 18(1). Collard, B.C.Y., M.Z.Z. Jahufer, J.B. Brouwer, and E.C.K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142(1-2): 169–196. Farrar, R.R., G.G. Kennedy, and R.K. Kashyap. 1992. Influence of life history differences of two tachinid parasitoids of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on their interactions with glandular trichome/methyl ketone-based insect resistance in tomato. J. Chem. Ecol. 18(3): 499–515. Fernandez-Munoz, R., M. Salinas, E. Domínguez, M. Álvarez, and J. Cuartero. 2000. Inheritance of resistance to the two-spotted spider mite from L. pimpinellifolium (Jusl.) Mill. accession 'TO-937.' Acta Physiol. Plant. 22(3): 358–359. Fernandez-Munoz, R., M. Salinas, M. Alvarez and J. Cuartero. 2003. Inheritance of resistance to two-spotted spider mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J. Am. Soc. Hortic. Sci. 128: 188-195. Firdaus, S., A.W.V. Heusden, N. Hidayati, E.D.J. Supena, R.G.F. Visser, and B. Vosman. 2012. Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187(1): 31–45. Flores-Hernandez, L.A., R. Lobato-Ortiz, J.J. Garcia-Zavala, J.D. Molina-Galan, D.M. Sargerman-Jarquin and M.D. Velasco-Alvarado. 2017. Tomato Wild Relatives as a Source of Germplasm for Breeding of the Species. Rev. Fitotec. Mex. 40: 83-91. Foolad, M.R. 2007. Genome Mapping and Molecular Breeding of Tomato. Int. J. Plant Genomics 2007: 1–52. Foolad, M.R., and D.R. Panthee. 2012. Marker-Assisted Selection in Tomato Breeding. Crit. Rev. Plant Sci. 31(2): 93–123. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T and Kononowicz AK. 2015. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell, Tissue Organ Cult. 120: 881–902. Ghosh, B., and A.D. Jones. 2017. Profiling, characterization, and analysis of natural and synthetic acylsugars (sugar esters). Anal. Methods 9(6): 892–905. Glas, J., B. Schimmel, J. Alba, R. Escobar-Bravo, R. Schuurink, and M. Kant. 2012. Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. Int. J. Mol. Sci. 13(12): 17077–17103. González, M., M.C. Cid, and M.G. Lobo. 2011. Usage of Tomato (Lycopersicum esculentum Mill.) Seeds in Health. Nuts Seeds Health Dis. Prev. 3: 1123–1132. Haggard, J.E., E.B. Johnson, and D.A.S. Clair. 2013. Linkage Relationships Among Multiple QTL for Horticultural Traits and Late Blight (P. infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum habrochaites. Genes, Genomes, Genet. 3(12): 2131–2146. Hanson, P., S.-F. Lu, J.-F. Wang, W. Chen, L. Kenyon, C.-W. Tan, K.L. Tee, Y.-Y. Wang, Y.-C. Hsu, R. Schafleitner, D. Ledesma, and R.-Y. Yang. 2016. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci. Hortic. 201: 346–354. Hanur, V.S., B. Reddy, V.V. Arya and P.V.R. Reddy. 2015. Genetic Transformation of Tomato Using Bt Cry2A Gene and Characterization in Indian Cultivar Arka Vikas. J. Agric. Sci. Technol. 17: 1805-1814. Jaime, R., P.J. Rey, J.M. Alcántara, and J.M. Bastida. 2012. Glandular trichomes as an inflorescence defence mechanism against insect herbivores in Iberian columbines. Oecologia 172(4): 1051–1060. Jeyasankar, A., S. Premalatha, and K. Elumalai. 2012. Biological activities of Solanum pseudocapsicum (Solanaceae) against cotton bollworm, Helicoverpa armigera Hübner and armyworm, Spodoptera litura Fabricius (Lepidotera: Noctuidae). Asian Pac. J. Trop. Biomed. 2(12): 981–986. Kauffman W.C. 1987. Influence of 2-tridecanone-based resistance of wild tomato on parasitoids and predators of the tomato fruit-worm, Heliothis zea (Boddie). Diss. Abstr. Int., B 48(5):1235B. Kimura, S., and N. Sinha. 2008. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. CSH Protoc. (12). Kortbeek, R., J. Xu, A. Ramirez, E. Spyropoulou, P. Diergaarde, I. Otten-Bruggeman, M.D. Both, R. Nagel, A. Schmidt, R. Schuurink, and P. Bleeker. 2016. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites. Metab. Plants: 305–331. Leckie, B.M., D.A. Dambrosio, T.M. Chappell, R. Halitschke, D.M.D. Jong, A. Kessler, G.G. Kennedy, and M.A. Mutschler. 2016. Differential and Synergistic Functionality of Acylsugars in Suppressing Oviposition by Insect Herbivores. Plos One 11(4). Liao, M., J.-J. Xiao, L.-J. Zhou, X. Yao, F. Tang, R.-M. Hua, X.-W. Wu, and H.-Q. Cao. 2017. Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. J. Appl. Entomol. 141(9): 721–728. Lin, S.Y.H., and J.T. Trumble. 1986. Resistance in wild tomatoes to larvae of a specialist herbivore, Keiferia lycopersicella. Entomol. Exp. Appl. 41(1): 53–60. Louda, S.M., and S.K. Collinge. 1992. Plant Resistance to Insect Herbivores: A Field Test of the Environmental Stress Hypothesis. Ecology 73(1): 153–169. Lucatti, A.F., F.R. Meijer-Dekens, R. Mumm, R.G. Visser, B. Vosman, and S.V. Heusden. 2014. Normal adult survival but reduced Bemisia tabaci oviposition rate on tomato lines carrying an introgression from S. habrochaites. BMC Genet. 15(1). Lucini, T., M.V. Faria, C. Rohde, J.T.V. Resende, and J.R.F.D. Oliveira. 2015. Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arth.-Plant Interactions 9(1): 45–53. Maliepaard, C., N. Bas, S.V. Heusden, J. Kos, G. Pet, R. Verkerk, R. Vrieunk, P. Zabel, and P. Lindhout. 1995. Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 75(4): 425–433. Maluf, W.R., G.M. Maciel, L.A.A. Gomes, M.D.G. Cardoso, L.D. Gonçalves, E.C.D. Silva, and M. Knapp. 2010. Broad-Spectrum Arthropod Resistance in Hybrids between High- and Low-Acylsugar Tomato Lines. Crop Sci. 50(2): 439. Mamta, K.R.K. Reddy, and M.V. Rajam. 2015. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol. Biol. 90(3): 281–292. Mandaokar, A., R. Goyal, A. Shukla, S. Bisaria, R. Bhalla, V. Reddy, A. Chaurasia, R. Sharma, I. Altosaar, and P.A. Kumar. 2000. Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hubner). Crop Prot. 19(5): 307–312. Mcdaniel, T., C.R. Tosh, A.M.R. Gatehouse, D. George, M. Robson, and B. Brogan. 2016. Novel resistance mechanisms of a wild tomato against the glasshouse whitefly. Agron. Sustainable Dev. 36(1). Momotaz, A., J.W. Scott and D.J. Schuster. 2010. Identification of Quantitative Trait Loci Conferring Resistance to Bemisia tabaci in an F-2 Population of Solanum lycopersicum x Solanum habrochaites Accession LA1777. J Am Soc. Hortic. Sci. 135: 134-142. Mutschler, M.A., R.W. Doerge, S.C. Liu, J.P. Kuai, B.E. Liedl and J.A. Shapiro. 1996. QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor. Appl. Genet. 92: 709-718. Muola, A., P. Mutikainen, L. Laukkanen, M. Lilley, and R. Leimu. 2010. Genetic variation in herbivore resistance and tolerance: the role of plant life-history stage and type of damage. J. Evol. Biol. 23(10): 2185–2196. Nadakuduti, S.S., J.B. Uebler, X. Liu, A.D. Jones, and C.S. Barry. 2017. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae. Plant Physiol. 175(1): 36–50. Nadeem, M.A., M.A. Nawaz, M.Q. Shahid, Y. Doğan, G. Comertpay, M. Yıldız, R. Hatipoğlu, F. Ahmad, A. Alsaleh, N. Labhane, H. Özkan, G. Chung, and F.S. Baloch. 2017. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Equip. 32(2): 261–285. Ning, J., G. Moghe, B. Leong, J. Kim, I. Ofner, Z. Wang, C. Adams, D.J. Arthur, D. Zamir, and L.L. Robert. 2015. A feedback insensitive isopropyl malate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiol. Pratissoli, D., V.L. Lima, V.D. Pirovani, and W.L. Lima. 2015. Occurrence of Helicoverpa armigera (Lepidoptera: Noctuidae) on tomato in the Espírito Santo state. Hortic. Bras. 33(1): 101–105. Rakha, M., N. Bouba, S. Ramasamy, J.-L. Regnard, and P. Hanson. 2016. Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resour. Crop Evol. 64(5): 1011–1022. Rakha, M., P. Hanson, and S. Ramasamy. 2015. Identification of resistance to Bemisia tabaci Genn. in closely related wild relatives of cultivated tomato based on trichome type analysis and choice and no-choice assays. Genet. Resour. Crop Evol. 64(2): 247–260. Rani, S.J., and R. Usha. 2013. Transgenic plants: Types, benefits, public concerns and future. J. Pharm. Res. 6(8): 879–883. Ranjith, M., Manichellappan, E. Harish, D. Girija, and P. Nazeem. 2016. Bacterial communities associated with the gut of tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) based on Illumina Next-Generation Sequencing. J. Asia-Pac. Entomol. 19(2): 333–340. Schilmiller, A.L., A.L. Charbonneau, and R.L. Last. 2012. Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc. Natl. Acad. Sci. 109(40): 16377–16382. Schilmiller, A.L., K. Gilgallon, B. Ghosh, A.D. Jones and R.L. Last. 2016. Acylsugar Acylhydrolases: Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes. Plant Physiol. 170: 1331-1344. Schilmiller, A.L., I. Schauvinhold, M. Larson, R. Xu, A.L. Charbonneau, A. Schmidt, C. Wilkerson, R.L. Last, and E. Pichersky. 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. P. Natl. Acad. Sci. USA. 106(26): 10865–10870. Sharma, A., L. Zhang, D. Niño-Liu, H. Ashrafi, and M.R. Foolad. 2008. A Solanum lycopersicum × Solanum pimpinellifolium Linkage Map of Tomato Displaying Genomic Locations of R-Genes, RGAs, and Candidate Resistance/Defense-Response ESTs. Int. J. Plant Genomics: 1–18. Silva, K.F., M. Michereff-Filho, M.E. Fonseca, J.G. Silva-Filho, A.C. Texeira, A.W. Moita, J.B. Torres, R. Fernández-Muñoz, and L.S. Boiteux. 2014. Resistance to Bemisia tabaci biotype B of Solanum pimpinellifoliumis associated with higher densities of type IV glandular trichomes and acylsugar accumulation. Entomol. Exp. Appl. 151(3): 218–230. Silva, V.D., M.D. Cardoso, J.C. de Moraes, F.A. Pimentel, L.D. Goncalves and D.K.P. Neri. 2008. Characterization and evaluation of synthetic acylsugar on the behavior of the whitefly Bemisia tabaci (Gennadius, 1886) b biotype (Hemiptera: Aleyrodidae) in tomato plant. Cienc. Agrotecnol. 32: 1408-1412. Simmons, A.T., G.M. Gurr, D. McGrath, P.M. Martin and H.I. Nicol. 2004. Entrapment of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species. J. Entomol. 43: 196-200. Sletvold, N., P. Huttunen, R. Handley, K. Kärkkäinen and J. Ågren. 2010. Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol. Ecol. 24: 1307-1319. Smeda, J.R., A.L. Schilmiller, A. Kessler, and M.A. Mutschler. 2017. Combination of QTL affecting acylsugar chemistry reveals additive and epistatic genetic interactions to increase acylsugar profile diversity. Mol. Plant Breed. 37(8). Smeda, J.R., A.L. Schilmiller, R.L. Last, and M.A. Mutschler. 2016. Introgression of acylsugar chemistry QTL modifies the composition and structure of acylsugars produced by high-accumulating tomato lines. Mol. Plant Breed. 36(12). Srinivasan, R., F.-c. Su and C.-c. Huang. 2013. Oviposition dynamics and larval development of Helicoverpa armigera on a highly preferred unsuitable host plant, Solanum viarum. Entomol. Exp. Appl. 147: 217-224. Stout, M.J. 2014. Host-Plant Resistance in Pest Management. Integr. Pest Manage. 2: 1–21. Subramanian, S., and S. Mohankumar. 2006. Genetic variability of the bollworm, Helicoverpa armigera, occurring on different host plants. J. Insect Sci. 6(26): 1–8. Suzuki, T., T. Murakami, Y. Takizumi, H. Ishimaru, D. Kudo, Y. Takikawa, Y. Matsuda, K. Kakutani, Y. Bai, and T. Nonomura. 2017. Trichomes: interaction sites of tomato leaves with biotrophic powdery mildew pathogens. Eur. J. Plant Pathol. 150(1): 115–125. Talekar, N.S., R.T. Opena and P. Hanson. 2006. Helicoverpa armigera management: A review of AVRDC's research on host plant resistance in tomato. Crop Prot. 25: 461-467. Torres-Vila, L.M., M.C. Rodriguez-Molina and A. Lacasa-Plasencia. 2003. Testing IPM protocols for Helicoverpa armigera in processing tomato: egg-count- vs. fruit-count-based damage thresholds using Bt or chemical insecticides. Crop Prot. 22: 1045-1052. Torres-Vila, L.M., M.C. Rodriguez-Molina, A. Lacasa-Plasencia and P. Bielza-Lino. 2002. Insecticide resistance of Helicoverpa armigera to endosulfan, carbamates and organophosphates: the Spanish case. Crop Prot. 21: 1003-1013. Vendemiatti, E., A. Zsögön, G.F.F.E. Silva, F.A.D. Jesus, L. Cutri, C.R.F. Figueiredo, F.A.O. Tanaka, F.T.S. Nogueira, and L.E.P. Peres. 2017. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Sci. 259: 35–47. Wilkens, R.T., G.O. Shea, S. Halbreich and N.E. Stamp. 1996. Resource availability and the trichome defenses of tomato plants. Oecologia 106: 181-191.zh_TW
dc.description.abstractTomato fruitworm (Helicoverpa armigera Hübner) is major production constraint to cultivated tomato (Solanum lycopersicum L.) in tropics and subtropics. Developing pest-resistant cultivars would be an alternative control approach, which could reduce the misuse of chemical pesticides in tomato production. Here, molecular markers, glandular trichomes and acylsugars associated with tomato fruitworm resistance were investigated. A total of 200 F2 plants derived from the interspecific hybridization between WorldVeg's breeding line S. lycopersicum CLN3682C and S. pimpinellifolium VI030462 were genotyped using 8 putative resistance loci previously identified for whitefly resistance on chromosomes 3, 5, 6, 7, 9 and 11. The same plants along with resistant and susceptible parents, their F1 and susceptible check tomato line were bioassayed for larval mortality, larval weight, pupal duration, and egg number using a no-choice test at 7 and 13 weeks after sowing. The results show that the mortality rate of larvae feeding on F2 populations for 10 days positively correlated with density of type IV trichome at 7-week-old plants. Type IV trichome and acylsugars production showed recessive gene action because the F1 was skewed strongly toward the susceptible parent. A total of 12, 2, 3, 1 and 9 CAPS markers in 4 regions were significantly associated with density of type IV trichome, larval mortality, pupal duration, larval weight and acylsugars respectively. More studies are underway to confirm these markers in F3 and BC1F2 populations which would be very useful for marker assisted selection in our breeding program for insect resistance.en_US
dc.description.tableofcontentsAbstract i Table of contents ii List of figures iv List of tables vi Chapter 1: Introduction 1 Chapter 2: Literature review 3 2.1 Cultivated tomato and wild relative 3 2.2 Helicoverpa armigera Hübner 4 2.3 Trichome 5 2.4 Acylsugars 6 2.5 Molecular markers 7 Chapter 3: Material and methods 9 3.1 Plant material 9 3.2 Helicoverpa armigera Hübner material 9 3.3 No-choice test 10 3.4 Trichome analysis 11 3.5 Acylsugar analysis 11 3.6 Markers analysis 12 3.6.1 Plant DNA-extraction 12 3.6.2 Polymerase chain reaction and acrylamide gel electrophoresis 13 3.7 Statistical analysis 14 Chapter 4: Result 15 4.1 Tomato fruitworm resistance in no-choice test 15 4.2 Trichomes density and acylsugars content 15 4.3 Correlation between phenotypes and tomato fruitworm 16 resistance parameters 4.4 Markers analysis 16 4.5 Stepwise multiple regression analysis 17 4.6 Analysis of variance for the association between markers and tomato fruitworm resistance traits17 Chapter 5: Discussion 19 Chapter 6: Conclusion 25 Reference 26zh_TW
dc.subjectCleaved amplified polymorphic sequenceen_US
dc.subjectinsect resistanceen_US
dc.subjectSolanum lycopersicum L.en_US
dc.subjectmarker-assisted selectionen_US
dc.title在野生番茄 (Solanum pimpinellifolium L.) 中發展與蕃茄夜 (Helicoverpa armigera Hübner) 抗性因子相關的分子標誌zh_TW
dc.titleDevelopment of molecular markers associated with tomato fruitworm (Helicoverpa armigera Hübner) resistance components in wild tomato (Solanum pimpinellifolium L.)en_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:國際農學碩士學位學程
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105030511-1.pdf7.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.