Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/96605
DC FieldValueLanguage
dc.contributor林長鋆zh_TW
dc.contributorChang-Yun Linen_US
dc.contributor.author吳豪翔zh_TW
dc.contributor.authorHao-Siang Wuen_US
dc.contributor.other統計學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-01-17T08:08:10Z-
dc.identifier.citationArnouts, H.; Goos, P. (2012). Staggered-level Designs for Experiments with More than One Hard-to-Change Factor. Technometrics, 54, 355-366. Booth, K.H.V.; Cox, D.R. (1962). Some Systematic Supersaturated Designs. Technometrics, 4, 489-495. Dumouchel, W.; Jones, B. (1994). A Simple Bayesian Modification of D-Optimal Designs to Reduce Dependence on an Assumed Model. Technometrics, 36, 37-47. Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. Jones, B.; Lin, D.K.J.; Nachtsheim, C.J. (2008). Bayesian D-optimal Supersaturated Designs. Journal of Statistical Planning and Inference, 138, 86-92. Li, W.W.; Wu, J.C.F. (1997). Columnwise-Pairwise Algorithms with Applications to the Construction of Supersaturated Designs. Technometrics, 39, 171-179. Lin, C.Y. (2014). Optimal Blocked Orthogonal Arrays. Journal of Statistical Planning and Inference, 145, 139-147. Lin, C.Y. (2015). Construction and Selection of the Optimal Balanced Blocked Definitive Screening Design. Metrika, 78, 373-383. Lin, C.Y. (2017). Supersaturated Multistratum Designs. Journal of Quality Technology, In press. Lin, C.Y. (2018a). Generalized Bayesian D criterion for Single-Stratum and Multistratum Designs. Quality and Reliability Engineering international, DOI: 10.1002/qre.2335. Lin, C.Y. (2018b). Robust Designs with High Projection Efficiency. Quality and Reliability Engineering international, 34, 347-359. DOI: 10.1002/qre.2257. Lin, C.Y. (2018c). Robust Split-Plot Designs for Model Misspecification. Journal of Quality Technology, 50, 76-87. Lin, C.Y.; Yang P. (2015). Response Surface Methodology Using split-plot Definitive Screening Designs. Journal of Quality Technology, 47, 351-362. Lin, C.Y.; Yang P. (2018). Robust Multistratum Baseline Designs. Computational Statistics and Data Analysis, 118, 98-111. Lin, C.Y.; Yang P.; Cheng S.W. (2017). Minimum Contamination and Beta-Aberration Criteria for Screening Quantitative Factors. Statistica Sinica, 27, 607-623. Meyer, R.K.; Nachtsheim, C.J. (1995). The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs. Technometrics, 37, 60-69. Miller, A. (1997). Strip-Plot Configurations of Fractional Factorials. Technometrics, 39, 153-161. Phoa, F.K.H.; Chen, R.B.; Wang, W.; Wong, W.K. (2016). Optimizing Two-level Supersaturated Designs Using Swarm Intelligence Techniques. Technometrics, 58, 43-49. Satterthwaite, F.E. (1959). Random Balance Experimentation. Technometrics, 1, 111-137. Wu, C.F.J. (1993). Construction of Supersaturated Designs Through Partially Aliased Interactions. Biometrika, 80, 661-669. Wu, C.F.J.; Hamada, M. (2000). Experiments: Planning, Analysis, and Parameter Design Optimization. New York: Wiley. Yang, P.; Lin, C.Y.; Li, W. (2015). Blocked Semifoldovers of Two-level Orthogonal Designs. Metrika, 78, 529-548. Yang, P.; Lin, C.Y. (2017). Optimal Split-Plot Orthogonal Arrays. Australian and New Zealand Journal of Statistics, 59, 81-94.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/96605-
dc.description.abstract在實務上實驗設計有許多限制,像是有些因子的水準不易改變、或太多的因子需要實驗,於是發展出許多因應的實驗設計,也有很多種準則來衡量不同的實驗設計。本文主要探討在兩水準之下結合超飽和實驗設計與交錯式層級設計兩種設計的部分因子設計,再利用貝氏D準則使其最佳化,也同時探討如何使其最佳化的演算法。zh_TW
dc.description.abstractIndustrial experiments have many constraints. For instance, there are too many factors for screening or there exist some factors whose levels are not easy to change. In this research, we combine supersaturated designs and staggered-level designs. We use the Bayesian D-optimal criterion and the swarm intelligence techniques to construct our designs.en_US
dc.description.tableofcontents1 緒論1 2 文獻回顧2 2.1 超飽和與交錯式層級實驗設計 2 2.2 評估準則 3 2.3 演算法 5 3 研究方法 8 3.1 模型與評估準則 8 3.2 群聚智能演算法 10 4 例子13 4.1 例子一:22 因子24 次實驗 13 4.2 例子二:10 因子8 次實驗 17 4.3 例子三:15 因子16 次實驗 19 4.4 例子四:15 因子20 次實驗 21 5 結論23 6 參考文獻24 7 參考程式26 7.1 子函數 27 7.2 主函數 43 7.3 執行 47zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-07-16起公開。zh_TW
dc.subject超飽和實驗設計zh_TW
dc.subject交錯式層級設計zh_TW
dc.subject貝氏D準則zh_TW
dc.subject平衡設計zh_TW
dc.subject縱列的成對互換演算法zh_TW
dc.subjectSupersaturated designsen_US
dc.subjectStaggered-level designsen_US
dc.subjectBayesian D criterionen_US
dc.subjectBalanced designsen_US
dc.subjectColumnwise-pairwise algorithmen_US
dc.title透過群聚智能演算法建構最佳貝氏D準則交錯式層級超飽和實驗設計zh_TW
dc.titleVia Swarm Intelligence Construct the Bayesian D-Optimal Staggered-Level Supersaturated Designsen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2018-07-16zh_TW
dc.date.openaccess2018-07-16-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.languageiso639-1zh_TW-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
Appears in Collections:統計學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105018006-1.pdf641.1 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.