Please use this identifier to cite or link to this item:
標題: 利用函數型資料分析校準氣象預測
Calibrating Weather Forecasting by Functional Data Analysis
作者: 汪欣樺
Xin-Hua Wang
關鍵字: 空間資料;長期資料;函數型資料分析;氣象預測;Spatial data;Longitudinal data;Functional data analysis;Weather forecasting
引用: [1] BBC. India heatwave toll passes 1,000, 2015. URL [2] Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association, 100(470):577–590, 2005. [3] Lu-Hung Chen and Ci-Ren Jiang. Multi-dimensional functional principal component analysis. Statistics and Computing, 27(5):1181–1192, 2017. [4] Matthew Avery. Literature review for local polynomial regression, 2013. URL mravery/AveryReview2.pdf. [5] Vadim Zipunnikov, Brian Caffo, David M Yousem, Christos Davatzikos, Brian S Schwartz, and Ciprian Crainiceanu. Functional principal component model for high-dimensional brain imaging. NeuroImage, 58(3):772–784, 2011. [6] Yulia Gel, Adrian E Raftery, and Tilmann Gneiting. Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method. Journal of the American Statistical Association, 99(467):575–583, 2004. [7] 黃敏嘉. 多變量函數-函數型線性迴歸. 中興大學統計學研究所學位論文, 2017. [8] 自由時報電子報. 寒流來襲4 天全台154 人猝死, 2017. URL http:// [9] 中央氣象局全球資訊網. URL [10] 行政院環境保護署環境資源資料開放平台. URL https://
來自兩個有相關性的隨機函數(random function),並考慮每個隨機函數中空間及
時間的相關性,再利用函數型資料分析(Functional Data Analysis) 的技巧,建立

Recently, weather forecasts become accurate as technology advances. However,
high-resolution long-term forecasts are still challenging due to the difficulty
of measurement certain atmospheric parameters (e.g. soil moisture) and the limitation
of computation resource. In this article we focus on the calibration of longterm
weather forecasts by historical weather observations and predictions. The
atmospheric parameters are treated as continuous spatial-temporal functions, and
function-on-function linear regression models are utilized. Our experiment on temperature
data in Taiwan shows that our achieves better calibration results compared
to state-of-the art approach.
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-23起公開。
Appears in Collections:統計學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104018016-1.pdf4.21 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.