Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97015
標題: 以原子層沉積系統製備氧化鋁鈍化薄膜應用於射極鈍化背接觸太陽電池
Preparation of Al2O3 Thin Films by Atomic Layer Deposition Applied to Passivated Emitter and Rear Cell
作者: 楊智翔
Chih-Hsiang Yang
關鍵字: 射極鈍化背接觸太陽能電池;空間陣列式原子層沉積系統;固定負電荷;介面缺陷;表面形貌;高分子球;二甲基甲酰胺;Passivated Emitter and Rear Cells;Non-vacuum Spatial ALD;Interfacial Trap Density;Negative Charge;Surface Morphologies;Polystyrene Spheres;Dimethylformamide
引用: References [1] S. F. B. Tett, P. A. Stott, M. R. Allen, W. J. Ingram and J. F. B. Mitchell,” Causes of twentieth-century temperature change near the Earth''s surface”, Nature, vol. 399 (1999) pp. 569-572. [2] N. P. Gillett, F. W. Zwiers, A. J. Weaver, and P. A. Stott, “Detection of human influence on sea-level pressure”, Nature, vol. 422 (2003) pp. 292-294. [3] Energy for the Future: Renewable sources of energy. White Paper for a Community Strategy and Action Plan, European Commission COM (97) 599 final (1997). [4] T. Tomita, “Toward giga-watt production of silicon photovoltaic cells, modules and systems”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 7-11. [5] A. Milner, “Towards larger and thinner wafers used in photovoltaic”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 186-192. [6] Wissenschaftlicher Beirat der Bundesregierung, Welt im Wandel – Energiewende zur Nachhaltigkeit (Springer, Berlin, Germany, 2003). [7] G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, “Influence of the Deposition Temperature on the c-Si Surface Passivation by Al2O3 Films Synthesized by ALD and PECVD”, Electrochem. Solid-State Lett., vol. 13 (2010) pp. H76-H79. [8] R. Hezel and K. Jaeger, “Low-Temperature Surface Passivation of Silicon for Solar Cells”, J. Electrochem. Soc., vol. 136 (1989) pp. 518-523. [9] G. Agostinelli, P. Vitanov, Z. Alexieva, A. Harizanova, H. F. W. Dekkers, S. de Wolf, and G. Beaucarne, “Surface passivation of silicon by means of negative charge dielectrics”, Proceedings of the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 2004, pp. 2529-2532. [10] B. Hoex, J. Schmidt, P. Pohl, M. C. M. d. Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3”, J. Appl. Phys., vol. 104 (2008) pp. 044903. [11] F. Werner, W. Stals, R. Görtzen, B. Veith, R. Brendel, and J. Schmidt, “High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells”, Energy Procedia, vol. 8 (2011) pp. 301-306. [12] P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, and J. Rentsch, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide”, Appl. Phys. Lett., vol. 95 (2009) pp. 151502. [13] T. T. Li and A. Cuevas, “Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide”, Phys. Status Solidi RRL, vol. 3 (2009) pp.160-162. [14] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process”, J. Appl. Phys., vol. 97 (2005) pp. 121301. [15] V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, “Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends”, J. Appl. Phys., vol. 113 (2013) pp. 021301. [16] P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, “High-Speed Spatial Atomic-Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation”, Adv. Mater., vol. 22 (2010) pp. 3564-3567. [17] T. Suntola, J. Antson, US Patent 4 058 430, 1977. [18] P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer, “Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition”, J. Vac. Sci. Technol., A, vol. 30 (2012) pp. 010802. [19] S.M. George, P.R. Fitzpatrick, and Z.M. Gibbs, “Atomic layer Deposition for continuous Roll-to-Roll Processing”, 54th Annual Technical Conference Proceedings, Chicago, USA, 2011, pp. 76-81. [20] D.J. Maas, B. van Someren, A.S. Lexmond, C.I.M.A. Spee, A.E. Duisterwinkel, A.J.P.M. Vermeer, European Patent 2159304 (A1); WO Patent 2010/024671, 2010. [21] J. Schmidt, F. Werner, B. Veith, D. Zielke, R. Bock, V. Tiba, P. Poodt, F. Roozeboom, A. Li, A. Cuevas, and R. Brendel, “INDUSTRIALLY RELEVANT Al2O3 DEPOSITION TECHNIQUES FOR THE SURFACE PASSIVATION OF Si SOLAR CELLS”, 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 2010, pp. 1130-1133. [22] A. E. Becquerel, “Mémoire sur les effets électriques produits sous l influence des rayons solaires”, Compt. Rendus de L’ Academic des Sciences, vol. 9 (1839) pp.561-567. [23] W. Adams and R. Day, Proc. Roy. Soc. vol. A25 (1877) p. 113. [24] W. shockley, “The Theory of p-n Junction in Semiconductors and p-n Junction Transistors”, Bell Syst. Tech. Jurn., vol. 28 (1949) pp. 435-441. [25] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode”, Phys. Rev., vol. 74 (1948) pp. 230-231. [26] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25 (1954) pp. 676-677. [27] D. E. Carlson and C. R. Wronski, “Electroabsorption avalanche photodiodes”, Appl. Phys. Lett., vol. 28 (1976) pp. 671-673. [28] K. W. Mitchell and C. Eberspacher, “Assessment of MOCVD- and MBE-growth GaAs for high-efficiency solar cell applications”, Trans. Elec. Dev., vol. 37 (1990) pp. 469-477. [29] M. Wolf, “Historical development of solar cells”, in Solar Cells, Backus C. E., IEEE Press, Piscataway. [30] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Sol. Energy Mater. Sol. Cells, vol. 65 (2001) pp.429-435. [31] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twentyfour percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss”, Appl. Phys. Lett., vol. 66 (1995) pp. 3636. [32] J. Zhao, A. Wang, and Martin A. Green, “19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett., vol. 73 (1998) pp. 1991-1993. [33] J. W. Lin, Y. Y. Chen, J. Y. Gan, W. P. Hseih, C. H. Du, and T. S. Chao, “Improved Rear-Side Passivation by Atomic Layer Deposition Al2O3/SiNx Stack Layers for High Voc Industrial p-Type Silicon Solar Cells”, IEEE ELECTR DEVICE L, vol. 34 (2013) pp.1163-1165. [34] B. Hoex, J. Schmidt, R. Bock, P.P. Altermatt, M.C.M. van de Sanden, W.M.M. Kessels, “Excellent passivation of highly doped p-type Si surfaces by the negative-charge dielectric Al2O3”, Appl. Phys. Lett., vol. 91 (2007) pp. 112107. [35] M. A. Green, Silicon Solar Cells: Advanced Principles and Practice, Sydney: UNSW, (1995). [36] W. MICHAELIS and M. H. PILKUHN, “Radiative Recombination in Silicon p-n Junctions”, phys. stat. sol., vol. 36 (1969) pp. 311-318. [37] F. Wang, Y. Wu, M. S. Hybertsen, and T. F. Heinz, ” Auger recombination of excitons in one-dimensional systems”, PHYSICAL REVIEW B, vol. 73 (2006) pp. 245424. [38] A. Richtera, F. Wernerb, A. Cuevasc, J. Schmidtb, and S.W. Glunz, ” Improved parameterization of Auger recombination in silicon”, Energy Procedia, vol. 27 (2012) pp. 88-94. [39] W. Shockley and, W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, vol. 87 (1952) pp. 835-841. [40] R. N. Hall, “Electron-Hole Recombination in Germanium”, Phys. Rev., vol. 87 (1952) pp. 387. [41] H. C. Yuan, J. Oh, and H. M. Branz, “Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells”, 2012 IEEE Photovoltaic Specialists Conference Austin, Texas, USA, 2012. [42] S. J. Lee, S. H. Kim, D. W. Kim, K. H. Kim, B. K. Kim, and J. Jang, “Effect of hydrogen plasma passivation on performance of HIT solar cells”, Sol. Energy Mater. Sol. Cells, vol. 95 (2011) pp. 81-83. [43] L. E. Black and K. R. McIntosh, “Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3”, Appl. Phys. Lett., vol. 100 (2012) pp. 202107. [44] A. D. Mallorquí, E. Alarcón-Lladó, I. C. Mundet, A. Kiani, B. Demaurex, S. D. Wolf, A. Menzel, M. Zacharias, and A. F. i Morral, “Field-effect passivation on silicon nanowire solar cells”, Nano Res., vol. 8 (2014) pp. 673-681. [45] T. Okada, T. Iwaki, K. Yamamoto, H. Kasahara and K. Abe, “Raman scattering from gas-evaporated silicon small particles”, Solid State Commum., vol. 49 (1984) pp. 809-812. [46] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, vol. 16556 (1977) pp. 3556-3571. [47] N. Maley, “Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys”, Phys. Rev. B, vol. 46, (1992) pp. 2078-2085. [48] P. Colomban, “Structure of oxide gels and glasses by infrared and Raman scattering Part 1: Alumina”, J. MATER. SCI., vol. 24 (1989), pp. 3002-3010. [49] P. Tarte, “Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra”, Spectrochim. Acta, vol. 23A (1967) pp. 2127-2143. [50] G. K. Priya, P. Padmaja, K. G. K. Warrier, A. D. Damodaran, and G. Aruldhas, “Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy”, J. Mater. Sci. Lett., vol. 16 (1997) pp. 1584-1587. [51] A. Boumaza, L. Favaro, J. L´edion, G. Sattonnay, J. B. Brubach, P. Berthet, A. M. Huntz, P. Roy, and R. T´etot, “Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study”, J. Solid State Chem., vol. 182 (2009) pp. 1171-1176. [52] D. Voll, P. Angerer, A. Beran, and S. H., “A new assignment of IR vibrational modes in mullite”, Vib. Spectrosc., vol. 30 (2002) pp. 237-243. [53] K. J. D. MacKenzie, “Infrared frequency calculations for ideal mullite (3Al2O3 SiO2)”, J. Am. Ceram. Soc., vol. 55 (1972) pp. 68-71. [54] K. Iishi, E. Salje, and C. Werneke, “Phonon spectra and rigid-ion model calculations on andalusite”, Phys. Chem. Miner., vol. 4 (1979) pp. 173-188. [55] S. W. Kieffer, “Thermodynamics and lattice vibrations of minerals: 2. Vibrational characteristics of silicates,” Rev. Geophys. Space Phys., vol. 17 (1979), pp. 20-34. [56] B. Winkler and W. Buehrer, “Lattice dynamics of andalusite: Prediction and experiment,” PHYS. CHEM. MINER., vol. 17 (1990) pp. 453-461. [57] P. McMillan and B. Piriou, “The structures and vibrational spectra of crystals and glasses in the silica-alumina system,” J. Non-Cryst. Solids, vol. 53 (1982) pp. 279-298. [58] L. E. Black, “New Perspectives on Surface Passivation: Understanding the Si–Al2O3 Interface”, Ph.D. thesis, Australian National University, 2015. [59] D. T. Britton, A. Hempel, M. Harting, G. Kogel, P. Sperr, W. Triftshauser, C. Arendse and D. Knoesen, “Annealing and recrystallization of hydrogenated amorphous silicon”, Phy. Rev. B, vol. 64 (2001) pp. 75403-1-75403-8. [60] J. Wallinga, “III-V Solar Cells and the Metal Organic Vapour Phase Epitaxy Process”, Ph.D. thesis, Universiteit Utrecht, 1998. [61] R. A. Sinton and A. Cuevas, “Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasisteadystate photoconductance data”, Appl. Phys. Lett., vol. 69 (1996) pp. 2510. [62] J. Hilibrand and R.D. Gold, 'Determination of the Impurity Distribution in Junction Diodes from Capacitance-Voltage Measurements', RCA Review, vol. 21 (1960) pp. 245. [63] A. C. Diebold (Editor) (2001), Handbook of Silicon Semiconductor Metrology. CRC Press, pp. 59–60. [64] E.H. Nicollian, J.R. Brews (2002), MOS Physics and Technology. Wiley. [65] A. Jakubowski, H. M. Przewłocki (1991), Diagnostic Measurements in LSI/VLSI Integrated Circuits Production. World Scientific, pp. 159. [66] S. S. Li and S. Cristoloveanu (1995). Electrical Characterization of Silicon-On-Insulator Materials and Devices. Springer, Chapter 6, pp. 163. [67] S. R. Wenham, M. A. Green and M. E. Watt, “Applied Photovoltaics”, Centre for Photovoltaic Devices and Systems, 1996. [68] T. T. A. Li, S. Ruffell, M. Tucci, Y. Mansoulie, C. Samundsett, S. D. Iullis, L. Serenelli, and A. Cuevas, “Influence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon”, Sol. Energy Mater. Sol. Cells, vol. 95 (2011) pp.69-72. [69] T. Maruyama, and T. Nakai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum 2-ethylhexanoate”, Appl. Phys. Lett., vol. 58 (1991) pp.2079. [70] T.M. Klein, D. Niu, W.S. Epling, W. Li, D.M. Maher, C.C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si (100)”, Appl. Phys. Lett., vol. 75 (1999) pp. 4001. [71] P. Tristant, Z. Ding, Q.B. Trang Vinh, H. Hidalgo, J.L. Jauberteau, J. Desmaison, C. Dong, “Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias”, Thin Solid Films, vol. 390 (2001) pp. 51-58. [72] J. SUN, and Y. C. SUN, “Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films”, Chinese J. Chem., vol. 22 (2004) pp. 661-667. [73] S. Basu, P.K. Singh, J.J. Huang, and Y.H. Wang, “Liquid-phase deposition of Al2O3 thin films on GaN”, J. Electrochem. Soc., vol. 154 (2007) pp. H1041- H1046. [74] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters”, Appl. Phys. Lett., vol. 92 (2008) pp. 253504. [75] S. Dueñas, H. Castán, H. García, A. de Castro, L. Bailón, K. Kukli, A. Aidla, J. Aarik, H. Mändar, T. Uustare, J. Lu, and A. Hårsta, “Influence of single and double deposition temperatures on the interface quality of atomic layer deposited Al2O3 dielectric thin films on silicon”, J. Appl. Phys., vol. 99 (2006) pp. 054902. [76] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Prog. Photovoltaics, vol. 8 (2000) pp. 473-487. [77] J. H. Zhao, A. H. Wang, and M. A. Green, “24.5 % Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics, vol. 7 (1999) pp. 471-474. [78] M. A. Green, “The path to 25 % silicon solar cell efficiency: History of silicon cell evolution”, Prog. Photovoltaics, vol. 17 (2009) pp. 183-189. [79] Y. Tsunomura, T. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Sol. Energy Mater. Sol. Cells, vol. 93 (2009) pp. 670-673. [80] B. Vermang, H. Goverde, V. Simons, I. D. Wolf, J. Meersschaut, S. Tanaka, J. John, J. Poortmans, and R Mertens, “A study of blister formation in ALD Al2O3 grown on silicon”, 38th Photovoltaic Specialists Conference IEEE, New York, USA, 2012. [81] L. Hennen, E.H.A. Granneman, and W.M.M. Kessels, “Analysis of Blister Formation in Spatial ALD Al2O3 for Silicon Surface Passivation”, 38th Photovoltaic Specialists Conference IEEE, New York, USA, 2012. [82] P. Vitanov, A. Harizanova, T. Ivanova, and T. Dimitrova, “Chemical deposition of Al2O3 thin films on Si substrates”, Thin Solid Films, vol. 517 (2009) pp. 6327-6330. [83] K. K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, and A. Toriumi, “Coordination and interface analysis of atomic-layer-deposition on Si (001) using energy-loss near-edge structures”, Appl. Phys. Lett., vol. 83 (2003) pp. 4306. [84] R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, “ALD and Characterization of Aluminum Oxide Deposited on Si (100) using Tris (diethylamino) Aluminum and Water Vapor”, J. Electrochem. Soc., vol. 153 (2006) pp. C701-C706. [85] G. Lucovsky, “A chemical bonding model for the native oxides of the III–V compound semiconductors”, J. Vac. Sci. Technol., vol. 19 (1981) pp. 456. [86] A. Laades, H. P. Sperlich, M. Bähr, U. Stürzebecher, C. A. Diaz Alvarez, M. Burkhardt, H. Angermann, M. Blech, and A. Lawerenz, “On the impact of interfacial SiOx-layer on the passivation properties of PECVD synthesized aluminum oxide”, Phys. Status Solidi C, vol. 9 (2012) pp. 2120-2123. [87] G. Guti´errez and B. Johansson, “Molecular dynamics study of structural properties of amorphous Al2O3”, Phys. Rev. B, vol. 65, (2002) pp. 104202. [88] V. V. Hoang and S. K. Oh, “Simulation of structural properties and structural transformation of amorphous Al2O3,” Physica B Condens Matter, vol. 352 (2004) pp. 73-85. [89] T. T. A. Li, “Surface passivation of crystalline silicon by sputtered aluminum oxide”, Ph. D thesis, The Australian National University, 2010. [90] T. T. A. Li and A. Cuevas, “Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide”, Prog. Photovoltaics, vol. 19 (2011) pp. 320-325. [91] T. T. A. Li, S. Ruffell, M. Tucci, Y. Mansouli´e, C. Samundsett, S. D. Iullis, L. Serenelli, and A. Cuevas, “Influence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon”, Sol. Energy Mater. Sol. Cells, vol. 95 (2011) pp. 69-72. [92] D. Suh, and W.S. Liang, “Electrical properties of atomic layer deposited Al2O3 with anneal temperature for surface passivation”, Thin Solid Films, vol. 539 (2013) pp. 309-316. [93] A. M. Albadri, “Characterization of Al2O3 surface passivation of silicon solar cells”, Thin Solid Films, vol. 562 (2014) pp. 451-455. [94] J. M. Kopfer, S. Keipert-Colberg, and D. Borchert, “Capacitance–voltage characterization of silicon oxide and silicon nitride coatings as passivation layers for crystalline silicon solar cells and investigation of their stability against x-radiation”, Thin Solid Films, vol. 519 (2011) pp. 6525-6529. [95] Y. Liu, L. Zhu, L. Guo, H. Zhang, and H. Xiao, “Surface Passivation Performance of Atomic-Layer-Deposited Al2O3 on p-type Silicon Substrates”, vol. 30 (2014) pp. 835-838. [96] I. Levin and D. Brandon, “Metastable alumina polymorphs: Crystal structures and transition sequences”, J. Am. Ceram. Soc., vol. 81 (1998) pp. 1995-2012. [97] F. Kersten, A. Schmid, S. Bordihn, J.W. Müller, and J. Heitmann, “Role of Annealing Conditions on Surface Passivation Properties of ALD Al2O3 Films”, Energy Procedia, vol. 38 (2013) pp. 843-848. [98] D. Suh, and W.S. Liang, “Electrical properties of atomic layer deposited Al2O3 with anneal temperature for surface passivation”, Thin Solid Films, vol. 539 (2013) pp. 309-316. [99] M. H. Cho, Y. S. Rho, H. J. Choi, S. W. Nam, D. H. Ko, J. H. Ku, H. C. Kang, D. Y. Noh, C. N. Whang, and K. Jeong, “Annealing effects of aluminum silicate films grown on Si (100)”, J. Vac. Sci. Technol. A, vol. 20 (2002) pp. 865. [100] H. Li, and S. R. Wenham, “Influence of a-Si:H deposition power on surface passivation property and thermal stability of a-Si:H/SiNx:H stacks”, AIP Adv., vol. 2 (2012) pp. 022106. [101] P. Saint-Cast, Y.H. Heo, E. Billot, P. Olwa, M. Hofmann, J. Rentsch, Stefan W. Glunz, and Ralf Preu, “ Variation of the layer thickness to study the electrical property of PECVD Al2O3/c-Si interface” , Energy Procedia, vol. 8 (2011) pp. 642-647. [102] P. Saint-Cast, D. Kania, R. Heller, S. Kuehnhold, M. Hofmann, J. Rentsch, and R. Preu, “High-temperature stability of c-Si surface passivation by thick PECVD Al2O3 with and without hydrogenated capping layers”, Appl. Surf. Sci., vol. 258 (2012) pp. 8371-8376. [103] T. Sameshima, K. Sakamoto, Y. Tsunoda, and T. Saitoh, “Improvement of SiO2 properties and silicon surface passivation by heat treatment with high-pressure H2O vapor”, Jpn. J. Appl. Phys., vol. 37 (1998) pp. L1452-1454. [104] J. Schmidt, M. Kerr, and A. Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/ plasma SiN stacks”, Semicond. Sci. Technol., vol. 16 (2001) pp.164-170. [105] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S.D. Wolf, and G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Sol. Energy Mater. Sol. Cells, vol. 90 (2006) pp. 3438-3443. [106] J. J. H. Gielis, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation”, J. Appl. Phys., vol. 104 (2008) pp. 073701. [107] G. Dingemans, M.C.M. van de Sanden, and W.M.M. Kessels., “Excellent si surface passivation by low temperature SiO2 using an ultrathin Al2O3 capping film”, Phys Status Solidi-R., vol. 5 (2011) pp. 22-24. [108] T. Trupke, R. A. Bardos, and M. D. Abbott, “Self-consistent calibration of photoluminescence and photoconductance lifetime measurements”, Appl. Phys. Lett., vol. 87 (2005) pp. 184102. [109] V. Boris, W. Florian, Z. Dimitri, B. Rolf, and S. Jan, “Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passivation of silicon”, Energy Procedia, vol. 8 (2011) pp. 307-312. [110] Y. W. Teng, C. L. Cheng, H. H. Chien, H. D. Chen, and Y. K. Chung, “Effect of annealing on aluminum oxide passivation layer for crystalline silicon wafer”, J ENG. Power Eng., vol. 7 (2013) pp. 1505-1510. [111] L. E. Black, T. Allen, K. R. McIntosh, and A. Cuevas, “Effect of boron concentration on recombination at the p-Si-Al2O3 interface”, J. Appl. Phys., vol. 115 (2014) pp. 093707. [112] S. Duttagupta, F. Lin, K. D. Shetty, M. Wilson, F. J. Ma, J. Lin, A. G. Aberle, and B. Hoex, “State-of-the-art Surface Passivation of Boron Emitters using Inline PECVD AlOx/SiNx Stacks for Industrial High-Efficiency Silicon Wafer Solar Cells”, 38th Photovoltaic Specialists Conference IEEE, New York, USA, 2012. [113] J. Wu, Y. Liu, X. Wang, and L. Zhang, “Application of ion Implantation Emitter in PERC Solar Cells”, IEEE J. Photovolt., vol. 4 (2014) pp. 52-57. [114] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”, J. Appl. Phys., vol. 104 (2008) pp. 113703. [115] B. Michl, M. Rüdiger, J. A. Giesecke, M. Hermle, W. Warta, and M. C. Schubert, “Efficiency limiting bulk recombination in multicrystalline silicon solar cells.” Sol. Energy Mater. Sol. Cells, vol. 98 (2012) pp. 441-447. [116] S. Gatz, T. Dullweber, and R. Brendel, “Evaluation of series resistance losses in screen-printed solar cells with local rear contacts”, IEEE J. Photovolt., vol. 1 (2011) pp. 37-42. [117] D. L. Meier, E. A. Good, R. A. Garcia. B. L. Bingham, S. Yamanaka, V. Chandrasekaran and C. Bucher, “DETERMINING COMPONENTS OF SERIES RESISTANCE FROM MEASUREMENTS ON A FINISHED CELL”, Conference Record of the 2006 IEEE 4th World Conference, New York, USA, 2006. [118] J. W. Lin, Y. Y. Chen, J. Y. Gan, W. P. Hseih, C. H. Du, and T. S. Chao, “Improved Rear-Side Passivation by Atomic Layer Deposition Al2O3/SiNx Stack Layers for High VOC Industrial p-Type Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 34 (2013) pp. 1163-1165. [119] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and S. Kuwano, “Development of new s-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer)”, Jpn. J. Appl. Phys., vol. 31 (1992) pp. 3518. [120] R. M. Swanson, S. K. Beckwith, R. A. Crane, W. D. Eades, Y. H. Kwark, R. A. Sinton, and S. E. Swirhun, “Point-Contact Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 31 (1984) pp.661-664. [121] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell”, Appl. Phys. Lett., vol. 55 (1989) pp. 1363-1365. [122] G. Agostinelli, P. Choulat, Y. Ma, and G. Beaucarne, “Thin Solar Cells: Issues and Processing for High Efficiency”, In Proceedings of the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, Vail, CO, USA, 2007. [123] J. Kim, J. Kim, J. Y. Lim, Y. Hwang, J. Cho, H. Choi, and E. Lee, “Laser ablation of aluminum oxide and silicon nitride rear-side passivation for i-PERC cell”. Renew. Energy, vol. 79 (2015) pp. 135-139. [124] Y. Hwang, C. S. Park, J. Kim, J. Kim, J.Y. Lim, H. Choi, J. Jo, and E. Lee, “Effect of laser damage etching on i-PERC solar cells”, Renew. Energy, vol. 79 (2015) pp. 131-134. [125] A. Richter, and S. W. Glunz, “Improved quantitative description of Auger recombination in crystalline silicon”, Phys. Rev. B, vol. 86 (2012) pp. 165202. [126] P. H. Lu, K. Wang, Z. Lu, A. J. Lennon, and S. R. Wenham, “Anodic Aluminum Oxide Passivation For Silicon Solar Cells”, IEEE J. Photovolt., vol. 3 (2013) pp. 143-151. [127] H. P. Wang, A. C. Li, T. Y. Lin, and J. H. He, “Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells”, Nano Energy, vol. 23 (2016) pp. 1-6. [128] P. A. Basore, “Extended spectral analysis of internal quantum efficiency”, In Proceedings of the Conference Record of the 23th IEEE Photovoltaic Specialists Conference, Louisville, KY, USA, 1993. [129] M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process”, Sol. Energy Mater. Sol. Cells, vol. 117 (2013) pp. 126-131. [130] O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology”, Prog. Photovolt., vol. 16 (2008) pp. 317-324. [131] Y. Kim, S. Jung, M. Ju, K. Ryu, J. Park, H. Choi, D. Yang, Y. Lee, and J. Yi, “The effect of rear surface polishing to the performance of thin crystalline silicon solar cells”, Sol. Energy, vol. 85 (2011) pp. 1085-1090. [132] T. Lüder, T. Lauermann, A. Zushlag, G. Hahn, and B. Terheiden, “Al2O3/SiNx-stacks at increased temperatures: Avoiding blistering during contact firing”, Energy Proced, vol. 27 (2012) pp. 426-431. [133] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poormans, and R. Mertens, “Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells”, Sol. Energy Mater. Sol. Cells, vol. 101 (2012) pp. 204-209. [134] Q. Qiao, H. Lu, J. Ge, X. Xi, R. Chen, J. Yang, J. Zhu, Z. Shi, and J. Chu, “18.5 % efficient AlOx/SiNx rear passivated industrial multicrystalline silicon solar cells”, Appl. Surf. Sci., vol. 30 (2014) pp. 439-444. [135] D. Y. Lee, H. H. Lee, J. Y. Ahn, H. J. Park, J. H. Kim, H. J. Kwon, and J. K. Jeong, “ A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts”, Sol. Energy Mater. Sol. Cells, vol. 95 (2010) pp. 26-29. [136] J. Kim, Y. Hwang, J. Kim, J. Lim, and E. Lee, “Investigation of rear side selective laser ablation and damage etching process for industrial PERC solar cells”, Energy Proced., vol. 55 (2014) pp. 791-796. [137] S. A. G. D. Correia, J. Lossen, M. Wald, K. Neckermann, and M. Bähr, “Selective laser ablation of dielectric layers”, In Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007. [138] G. Poulain, D. Blanc, A. Focsa, M. De Vita, B. Semmache, M. Gauthier, Y. Pellegrin, M. Lemiti, “Laser ablation mechanism of silicon nitride layers in a nanosecond UV regime”, Energy Proced, vol. 27 (2012) pp. 516-521. [139] S. Hermann, T. Dezhdar, N. P. Harder, R. Brendel, M. Seibt, and S. Stroj, “Impact of surface topography and laser pulse duration for laser ablation of solar cell front side passivating SiNx layers”, J. Appl. Phys., vol. 108 (2010) pp. 114514-114521. [140] S. Parola, D. Blanc-Pélissier, C. Barbos, M. Le Coz, G. Poulain, and M. Lemiti, “Time-resolved photoluminescence for evaluating laser-induced damage during dielectric stack ablation in silicon solar cells”, Appl. Surf. Sci., vol. 374 (2016) pp. 177-182. [141] S. M. Jung, Y. H. Kim, S. I. Kim, and S. I. Yoo, “Design and fabrication of multi-layer antireflection coating for III-V solar cell”, Curr. Appl. Phys., vol. 11 (2011) pp. 538-541. [142] S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, ”Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling”, Energy Procedia, vol. 15 (2012) pp. 78-83. [143] J. H. Selj, T. T. Mongstad, R. S?nden˚a, and E. S. Marstein, “Reduction of optical losses in colored solar cells with multi-layer antireflection coatings”, Sol. Energy Mater. Sol. Cells, vol. 95 (2011) pp. 2576-2582. [144] H. J. Yang, K. S. Ji, J. Choi, and H. M. Lee, “Annealing effect on surface passivation of a-Si:H/c-Si interface in terms of crystalline volume fraction”, Curr. Appl. Phys., vol. 10 (2010) pp. S375-S378. [145] J. W. A. Schぴuttauf, C. H. M. V. der Werf, W. G. J. H. M. van Sark, J. K. Rath, and R. E. I. Schropp, “Comparison of surface passivation of crystalline silicon by a-Si:H with and without atomic hydrogen treatment using hot-wire chemical vapor deposition”, Thin Solid Films, vol. 519 (2011) pp. 4476-4478. [146] T. C. Thi, K. Koyama, K. Ohdaira, and H. Matsumura, “Passivation characteristics of SiN𝑥/a-Si and SiN𝑥/Si-rich-SiN𝑥 stacked layers on crystalline silicon”, Sol. Energy Mater. Sol. Cells, vol. 100 (2012) pp. 169-173. [147] T. F. Schulze, L. Korte, and B. Rech, “Impact of a-Si:H hydrogen depth profiles on passivation properties in a-Si:H/c-Si hetero-junctions”, Thin Solid Films, vol. 520, (2012) pp. 4439-4444. [148] J. Ge, Z. P. Ling, J. Wong, T. Mueller, and A. G. Aberle, “Optimisation of intrinsic a-Si:H passivation layers in crystalline-amorphous silicon heterojunction solar cells”, Energy Procedia, vol. 15 (2012) pp. 107-117. [149] J. Ko, D. Gong, K. Pillai et al., “Double layer SiN𝑥:H films for passivation and anti-reflection coating of c-Si solar cells”, Thin Solid Films, vol. 519 (2011) pp. 6887-6891. [150] W. R. Taube, A. Kumar, R. Saravanan et al., “Efficiency enhancement of silicon solar cells with silicon nanocrystals embedded in PECVD silicon nitride matrix”, Sol. Energy Mater. Sol. Cells, vol. 101 (2012) pp. 32-35. [151] S. Wang, A. Lennon, B. Tjahjono, L. Mai, B. Vogl, and S. Wenham, “Overcoming over-plating problems for PECVD SiN𝑥 passivated laser doped p-type multi-crystalline silicon solar cells”, Sol. Energy Mater. Sol. Cells, vol. 99 (2012) pp. 226-234. [152] R. Bousbih, W. Dimassi, I. Haddadi, S. Ben Slema, P. Rava, and H. Ezzaouia, “Silicon lifetime enhancement by SiN𝑥:H anti-reflective coating deposed by PECVD using SiH4 and N2 reactive gas”, Solar Energy, vol. 86 (2012) pp. 1300-1305. [153] L. Remache, E. Fourmond, A. Mahdjoub, J. Dupuis, and M. Lemiti, “Design of porous silicon/PECVD SiO𝑥 antireflection coatings for silicon solar cells”, Mat. Sci. Eng. B, vol. 176 (2011) pp. 45-48. [154] G. Guzman, B. Dahmani, J. Puetz, and M. A. Aegerter, “Transparent conducting sol-gel ATO coatings for display applications by an improved dip coating technique”, Thin Solid Films, vol. 502 (2006) pp. 281-285. [155] J. Puetz and M. A. Aegerter, “Dip coating technique”, in Handbook on Sol-Gel Technologies for Glass Producers and Users, M. A. Aegerter and M. Mennig, Eds., p. 37, Kluwer Academic Publishers, 2004. [156] M. Vishwas, K. N. Rao, K. V. A. Gowda, and R. P. S. Chakradhar,“Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process”, Spectrochim. Acta A, vol. 83 (2011) pp. 614-617. [157] N. H. Aljufairi, “Electric properties and surface structure of TiO2 for solar cells”, Energy, vol. 39 (2012) pp. 6-10. [158] Z. Zhang, P. Zhang, L. Guo, T. Guo, and J. Yang, “Effect of TiO2-SiO2 sol-gel coating on the cpTi-porcelain bond strength”, Materials Letters, vol. 65 (2011) pp. 1082-1085. [159] ぴO. Kesmez, E. Burunkaya, N. Kiraz, H. E. C¸amurlu, M. Asiltぴurk, and E. Arpac¸, “Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings”, J. Non-Cryst. Solids, vol. 357 (2011) pp. 3130-3135. [160] A. Elfanaoui, E. Elhamri, L. Boulkaddat et al., “Optical and structural properties of TiO2 thin films prepared by sol-gel spin coating”, Int. J. Hydrogen Energy, vol. 36 (2011) pp. 4130–4133. [161] T. Mizuta, T. Ikuta, T. Minemoto, H. Takakura, Y. Hamakawa, and T. Numai, “An optimum design of antireflection coating for spherical silicon solar cells”, Sol. Energy Mater. Sol. Cells, vol. 90 (2006) pp. 46-56. [162] N. Batra, P. Kumar, S. K. Srivastava et al., “Controlled synthesis and characteristics of antireflection coatings of TiO2 produced from an organometallic colloid”, Mater. Chem. Phys., vol. 130 (2011) pp. 1061-1065. [163] B. Michl, M. Rぴudiger, J. A. Giesecke, M. Hermle, W. Warta, and M. C. Schubert, “Efficiency limiting bulk recombination in multicrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 98 (2012) pp. 441-447.
摘要: 
射極鈍化背接觸太陽能電池主要特徵為在傳統太陽電池背表面沉積氧化鋁與氮化矽疊層薄膜作為鈍化層,有效減少載子在背表面複合,同時能微量增加長波長光子之吸收,提升開路電壓與短路電流。現今大多數的太陽能廠因為產能需求,皆採用電漿輔助化學氣相沉積系統取代原子層沉積系統來製備氧化鋁薄膜。為了提高氧化鋁薄膜品質並且兼顧沉積速率,本研究利用非真空空間陣列式原子層沉積系統沉積氧化鋁薄膜,調變製程參數與退火溫度來研究薄膜的基礎特性,此外,本篇論文也探討了不同矽基板表面形貌、新型開孔技術及旋轉塗佈法製備氧化矽與氧化鈦疊層抗反射膜對於射極鈍化背接觸太陽電池效能之影響。
本研究改變水流量、製程溫度及退火溫度製備氧化鋁薄膜得到不同的材料結構特性與電性。氧化鋁薄膜帶電的原因是來自於薄膜內不同配位數的氧鋁結構所致,當四面體的四氧化鋁離子結構與八面體的六氧化鋁結構比值越高時,氧化鋁較傾向帶負電。介面的化學鈍化則跟氧化鋁與矽晶片之間的二氧化矽及反應時所產生的氫原子有關,當氧原子與氫離子能有效填補表面的懸浮鍵時表面缺陷能有效降低介面缺陷密度,研究結果發現當水流量為500 sccm時,固定負電荷為-2.7×1012 cm-2、介面缺陷為7.15 ×1012 eV-1cm-2,此時表面複合速率為40.5 cm/s; 當製程溫度升至170°C時固定負電荷為-4.59×1012 cm-2、介面缺陷為6.98 ×1012 eV-1cm-2,表面複合速率為41.55 cm/s; 當退火溫度為450°C時固定負電荷為-1.25×1012 cm-2、介面缺陷為6.71 ×1012 eV-1cm-2, 表面複合速率為37.5 cm/s。為了解決在沉積氧化鋁時因氫氣或水氣的流動所產生的氣泡,我們採用感應耦合電漿化學氣相沉積系統沉積一層薄氧化矽作為界層及減薄氧化鋁厚度同時沉積氮化矽薄膜作為氧化鋁的保護層兩種方法,最終優化的太陽電池開路電壓為0.647 V、短路電流為38.2 mA/cm2、填充因子為0.776,而效率為19.18 %。在此章節中,我們歸納出主要影響少數載子生命週期表現的是介面缺陷的多寡,其次才是固定負電荷的強弱。
本論文也改變蝕刻時間,讓矽晶片的背面產生不同的形貌變化,接著沉積氧化鋁薄膜,研究背表面形貌對於超量少數載子行為的影響。結果發現當氧化鋁沉積在幾乎平坦的背表面會與氧化鋁形成良好的披覆,獲得較高的載子生命週期,長波長頻譜響應也微量增加,最終以平坦背表面所製成的太陽電池可得到開路電壓0.662 V、短路電流為36.69 mA/cm2、填充因子為0.793,轉換效率為19.27 %。
有別於傳統的雷射開孔技術,本研究採用旋轉塗佈方式將球狀高分子聚合物均勻分散在基板背表面,透過後續氧化鋁薄膜的後退火製程將高分子球氣化並留下孔洞,相較於雷射技術,此開孔方法能有效減少因雷射高能量所造成的基板損傷,微幅提升開路電壓,將不同分佈比例的試片製成電池後比較其電性特性發現當孔洞覆蓋率為2.88 %時可得到最佳效能為開路電壓0.622 V、短路電流為36.9 mA/cm2、填充因子為0.779,轉換效率為17.88 %,略低於雷射開孔製程的17.99 %,主要是因為雷射製程較能均勻地排列孔洞得到較高的填充因子所致。
本研究也利用低成本的旋轉塗佈技術將氧化矽與氧化鈦混合溶液均勻地噴塗在太陽電池前表面,取代原有的氮化矽作為抗反射層,在退火過程中因為薄膜應力分佈不均容易造成膜裂而影響光學特性。為改善薄膜品質,我們在溶液中滴入二甲基甲酰胺,可有效改善混和薄膜膜裂問題,使得其平均反射率下降約9 %。經過50次的再現性測試中發現,雖然混合膜應用於太陽電池元件所得到之平均效率約16.3 % 略低於市售電池的16.8 %,但生產成本卻可大幅下降。此結果顯示旋轉塗佈製備抗反射層技術有其潛力應用於現行的太陽能電池產線上。
最終我們將上述優化過後的參數與結構整合並製備成大面積的射極鈍化背接觸太陽能電池,轉換效率約為20.5 %, 其開路電壓為0.66 V、短路電流為39.16 mA/cm2、填充因子為0.793;而目前市售的射極鈍化背接觸太陽電池平均轉換效率約為21.2 %, 開路電壓0.667 V、短路電流為40.32 mA/cm2、填充因子為0.788。兩者相比可發現開路電壓與填充因子差距很小,主要的差距在於短路電流,業界的電流較高主要原因為電池入光面的粗電極條數較多,易於取出自由載子。

Compared to traditional monocrystalline silicon solar cells, passivated emitter and rear cells (PERC) feature as its rear-side passivation stacks of aluminum oxide and silicon nitride (Al2O3/SiNx), which can reduce the recombination velocity and enhance the absorption of long-wavelength incident light. Currently plasma-enhanced chemical vapor deposition (PECVD) technique becomes a good choice instead of plasma-assisted atomic layer deposition system (ALD) for depositing Al2O3 films due to capacity requirement. In this thesis, high quality Al2O3 films are prepared by using self-developed non-vacuum spatial ALD with deposition rate of 0.16 nm/cycle. The deposition and annealing conditions are investigated to estimate properties of Al2O3 films. We also have investigated other structural topics such as rear-side surface morphologies, novel rear-side opening technique and the antireflective coating (ARC) material. Finally all the concepts are merged to fabricate a PERC.
The passivation effect of Al2O3 films could be divided into chemical passivation and field effect passivation, which are mainly related to interfacial trap density (Dit) and negative charge (Qf) of Al2O3 films, respectively. The interfacial SiO2 films and hydrogen atoms can effectively passivate dangling bonds to prevent carriers being trapped. The root cause for the charges of Al2O3 is determined by fourfold-coordinated AlO4 tetrahedral configuration. Another stable sixfold-coordinated AlO6 octahedra also exist within the Al2O3 bulk. The more the ratio of AlO4 sites to AlO6 sites, the higher the negative charges. Experimental result shows that as H2O carrier flow reaches 500 sccm, the Qf and Dit are -2.7×1012 cm-2 and 7.15 ×1012 eV-1cm-2, respectively, leading to the surface recombination velocity (Smax) 40.5 cm/s; When deposition temperature is 170°C, the Qf and Dit are -4.59×1012 cm-2 and 6.98 ×1012 eV-1 cm-2, with a corresponded Smax of 41.55 cm/s; The Qf and Dit are -1.25×1012 cm-2 and 6.71 ×1012 eV-1cm-2, the corresponded Smax is 37.5 cm/s, after the post-annealing treatment was performed to Al2O3 films. The blisters which form at the Si/Al2O3 interface occur under an external load in the presence of a tensile residual stress due to the effusion of H2 and H2O. Two approaches are proposed to solve it. First a stoichiometric silicon is deposited on silicon surface by inductively coupled plasma chemical vapor deposition to block blisters. The other method is to reduce the thickness of Al2O3 as well as increase the post-annealing temperature to out-gassing the interior gases. The optimized PERC with the improved triple-layer SiO2 /Al2O3 /SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (Voc) and short-circuit current (Jsc). The electrical performance of the optimized PERC with the Voc of 0.647 V, Jsc of 38.2 mA/cm2, fill factor of 0.776, and the efficiency of 19.18 % can be achieved.
Various rear-side surface morphologies were obtained through different etching treatments. We compare the PERCs with standard etching treatment and further polishing processes on rear-side surfaces. Experimental results show that compared with the unpolished cell, the polished cell attains superior electrical performance, particularly in Voc and Jsc, because of the more effective rear-side surface passivation and reabsorption of long-wavelength light. Both improvements raise the conversion efficiency to 19.27 %, with the Voc of 0.662 V, Jsc of 36.69 mA/cm2, and FF of 0.793.
Instead of using the traditional laser ablation process, this thesis demonstrates spin-coated polystyrene spheres (PS) to create local openings on the rear side of PERCs. Effects of PS concentration and post-annealing temperature on PERC performance are investigated. The experimental results show that the PS are randomly distributed on wafers and no PS are joined together at a spin rate of 2000 rpm. The PS can be removed at a temperature of 350°C, leaving holes on the passivation layers without damaging the wafer surfaces. As compared to the laser opening technique with the same contact fraction, the PS opening technique can yield a higher minority effective lifetime, a higher Voc, and a slightly higher Jsc. Although the fill factor of the PS opening technique is lower owing to non-optimized distribution of the openings, the conversion efficiency of the devices is comparable to that of devices prepared via the laser opening process.
Composite silicon dioxide-titanium dioxide (SiO2-TiO2) films are deposited on a large area of 15.6 × 15.6 cm2 textured multicrystalline silicon solar cells to increase the incident light trapped within the device. For further improvement of the antireflective coatings (ARCs) quality, dimethylformamide (DMF) solution is added to the original SiO2-TiO2 solutions. DMF solution solves the cracking problem, thus effectively decreasing reflectance as well as surface recombination. The ARCs prepared by sol-gel process and PECVD on multicrystalline silicon substrate are compared. The average efficiency of the devices with improved sol-gel ARCs is 16.3 %, only 0.5 % lower than 16.8 % of devices with PECVD ARCs.
Eventually a PERC based on all concepts mentioned above is realized on a 15.6 × 15.6 cm2 p-type solar grade silicon wafer. The conversion efficiency is 20.5 %, slightly lower than 21.2 % of the PERC from the industrial. The main factor in around 0.7 % difference can be attributed to the amounts of front side bus bars, which collect minority carrier lifetime. The results represents that the spatial ALD utilized in this thesis has high potential to be used in industrial production line.
URI: http://hdl.handle.net/11455/97015
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-8100064302-1.pdf12.12 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.