Please use this identifier to cite or link to this item:
標題: 全橋雙向感應電能暨訊號傳輸
Simultaneous Full-Bridge Bi-directional Inductive Power and Data Transfer For Electric Vehicle
作者: 郭彥霆
Yen-Ting Kuo
關鍵字: 感應電能傳輸;相移式脈衝寬度調變;SAE TIR J2954;IPT;PSPWM;inductive power transmission;phase shift pulse width modulation;SAE TIR J2954;IPT;PSPWM
引用: [1] C. C. Huang, C. L. Lin and Y. K. Wu, “Simultaneous wireless power/data transfer for electric vehicle charging”, IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 682-690, Jan. 2017. [2] J. Schneider, 'SAE J2954 overview and path forward,' ed , 2013. [3], Jan. 2018. [4] “Faraday''s law of induction,”, Jan. 2018. [5] M. N. O. Sadiku, Elements of Electromagnetics (6th ed.). Oxford University Press. p. 869. ISBN13:9780199321384. 2014. [6] N. N. Rao, Elements of Engineering Electromagnetics (6th ed.). Prentice Hall. p.788. ISBN13:9780131139619. [7] K. Morgan, Ampere’s Law. [8] T. DieKhans, and R. W. D. Doncker, “ A dual-side controlled indeuctive power transfer system optimized for large coupling factor variations and partial load,” IEEE Trans, Power Electron., vol. 30, no.11, pp.6320-6328, Nov. 2015. [9] T. Bieler, M. Perrottet, V. Nguyen, and Y. Perriard, “Wireless power and data transmission,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 1266–1272, Sep. 2002. [10] B. W. Flynn and K. Fotopoulou, 'Rectifying loose coils: Wireless power transfer in loosely coupled inductive links with lateral and angular misalignment,' IEEE Microwave Magazine, vol. 14, no. 2, pp. 48-54, March-April 2013. [11] A. Abdolkhani, and A. P. Hu, “Improved coupling design of contactless slip ring for rotary applications,” IEEE Emerging and Selected Topics in Power Electron., vol. 3, no. 1, pp. 288-295, Mar. 2015. [12] Y.Y. Cui, M. Lou, J.Q Xiao, X.Y Zhang, S.M Shi, P.W Lu, 'Research and implementation of SEC-DED Hamming code algorithm', TENCON 2013 - 2013 IEEE Region 10 Conference (31194), Jan. 2014. [13] R. G. Marquart, J. C. Hancock, 'Performance of Hamming Codes', IEEE Trans. Space Electron. Tele., Vol. 9, Iss.4, Dec. 1963. [14] Y.Y. Cui, X.Y. Zhang, 'Research and implemention of interleaving grouping Hamming code algorithm', Signal Processing, Communication and Computing (ICSPCC), Nov. 2013. [15] C. Zheng, H. Ma, J. S. Lai, and L. Zhang, “Design Considerations to Reduce Gap Variation and Misalignment Effects for the Inductive Power Transfer System,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6108-6119, Nov. 2015. [16] S. Li,and C. C. Mi “Wireless Power Transfer for Electric Vehicle Applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 4-17, Mar. 2015. [17] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005. [18], Jan. 2018 [19] G. B. Joun, and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1013–1022, Nov. 1998. [20] P. Athalye, D. Maksimovic, and R. Erickson, “High-performance front-end converter for avionics applications,” IEEE Trans. Aerospace and Electron. Syst., vol. 39, no. 2, pp. 462-470, Apr. 2003. [21] S. Wang, K. Izaki, I. Hirota, H. Yamashita, H. Omori, and M. Nakaoka, “Induction-heated cooking appliance using new quasi-resonant ZVS-PWM inverter with power factor correction,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 705–712, Jul./Aug. 1998. [22] F. Sanz, C. Sagues, and S. Llorente, “Induction heating appliance with a mobile double-coil inductor,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 1945-1952, Jun. 2015. [23] S. Walder, X. Yuan “Effect of Load Parasitics on the Losses and Ringing in High Switching Speed SiC MOSFET Based Power Converters,” IEEE Trans. ECCE, Oct. 2015. [24] S. Haykin, M. Moher, Communication Systems, 5th ed., ( John Wiley & Sons, Inc., 2010 ) [25], Jan. 2018 [26], May 2016 [27] ck_guide.htm, Jan. 2018 [28], Jan. 2018 [29] 20discrimination%20method%20of%20SSB%20generation.php#.Wlq9vq6WaUk, Jan. 2018 [30], Jan. 2018 [31] A. Lenoir, K. Rahmani, 'Electronic device and methods of implementing the 1-wire protocol using an interrupt,' WO 2005076144 A3, Nov. 2005 [32], Jan. 2018 [33], Jan. 2018 [34], Jan. 2018 [35] P.D. Biernacki, M.Y. Frankel, M.E. Gingerich, and P.J. Matthews, 'A High-Speed Mixed Digital-to-Analog Circuit Board for Accurate Control of Wavelength Tunable Lasers for Fiber-Optic Communications, ' OSA, Journal of Lightwave Technology. 17, 1999 [36] MIPI Alliance, Inc., 'MIPI Display Serial Interface (MIPI DSI)' v1.00a Apr. 2006 [37] G.David, “ Introduction to Elementary Particles, “ 2nd, Revised. KGaA, Weinheim: Wiley-VCH Verlag GmbH & Co. 2008: XVI. ISBN :978-3-527-40601-2 [38] H.S. Jian, C.C. Lin, 'Design of A Wireless Vehicle Charging System Adapted to Mutual Inductance Variation, ' Jul. 2017
近年來感應電能傳輸 ( Inductive Power Transfer, IPT ) 逐漸受到重視,原因是相較傳統插電方式,它更能給消費者帶來便利及安全。其 IPT 原理是透過互感及磁偶合,將能量從一端傳送另一端,目前國內外已有高效率應用感應電能傳輸系統 ( IPT system ) 對電動載具電池的充電研究,然而,具備定功率雙向充放電及資料傳輸功能的文獻則相當罕見,少數具有該功能的概念設計則僅有數值模擬的結果呈現。

先前的研究 “電動車無線充電同時資料傳送裝置“ 在充電的同時提供訊號回傳功能,本研究接續進行改良,提出了另一種 IPT 系統架構具有雙向傳送電力及訊號的方法。並且提供了系統可因應負載變化而適應性調整操作頻率。在電能傳輸方面,ㄧ次側的變頻逆變器利用相移式脈衝寬度調變 ( Phase Shifted Pulse Width Modulated, PSPWM ) 驅動全橋電路產生週期性的載波頻率及交變電流。交變電流透過 LC 拓撲結構傳送電能到二次側。二次側利用 LC 拓樸結構及整流器將電能傳送到負載端。為提高效能達到最小伏安比 ( Volt-Amp Rating, VAR ),本研究 IPT 系統操作在零相位角度 ( Zero-Phase-Angle, ZPA )。

在資料傳輸方面,例如ㄧ次側要求二次側回傳車牌號碼等資料。本研究依此設計了該系統專屬的通訊方式與協議,利用 PSPWM 機制模擬二位元相位偏移調變 ( Binary phase-shift keying, BPSK ) 促成二位元正交振幅調變 ( Binary Quadrature Amplitude Modulation, 2-QAM ) 組成數位訊號,達到資料傳輸的目的。為求提昇通訊品質,本研究提出漢明碼 ( Hamming code ) 搭配 Single Error Correct, Double Error Detect ( SECDED ) 增強訊號傳輸的強健性。本研究將依循 SAE TIR J2954 的標準將傳輸頻率設定在 81.39-90 kHz 輕量車充電系統的常用頻帶,及實現電能傳輸 1000 W 時,通訊品質可達 99%。

In recent years, inductive power transfer (IPT) has been paid more and more attention, because it can bring convenience and safety to consumers compared with the traditional plug-in mode. Its IPT principle is through mutual inductance and magnetic coupling, the energy from one end to the other end, at present, at home and abroad have high efficiency application of IPT system on the electric carrier battery charge research, however, with fixed power bidirectional charge and discharge and data transmission function of the literature is quite rare, A few conceptual designs with this function only have numerical simulation results presented.

The previous study, ' Simultaneous Wireless Power and Data Transfer for Electric Vehicle Charging ' to provide signal return function while charging, this study continued to improve, proposed another IPT system architecture has a two-way transmission of power and signal methods. The system can adjust the operating frequency adaptively due to the load change. In the aspect of power transmission, the variable frequency inverter uses phase shift pulse width modulation, PSPWM to drive the whole bridge circuit to generate periodic carrier frequency and alternating current. Alternating current transmits electricity through the LC topological structure to two times. The electric energy is transmitted to the load end by using the LC topology and the rectifier on two sides. In order to improve the efficiency of the minimum volt-ampere (VA) ratio,
the IPT system operates in zero phase angle (ZPA).

In the data transmission aspect, for example the request two times side to return the license plate number and so on. This study designed the system''s exclusive communication mode and protocol, using the PSPWM mechanism to simulate binary phase shift modulation (BPSK) to promote binary quadrature amplitude modulation (2-QAM) constitutes a digital signal to achieve the purpose of data transmission. In order to improve the communication quality, this study proposes that the Hamming code is paired with single error correct, double error detect (SECDED) to enhance the robustness of signal transmission.

This study will be in accordance with SAE TIR J2954 standard transmission frequency set in the 81.39-90 kHz Lightweight vehicle charging system of the common frequency band, and the realization of power transmission 1000 W, communication quality up to 99%.
Rights: 同意授權瀏覽/列印電子全文服務,2021-01-31起公開。
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-5104064014-1.pdf3.43 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.