Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97122
標題: 摻鎂氧化鋅奈米柱陣列之成長與性質研究
Study on the growth and properties of Mg-doped ZnO nanorod arrays
作者: 方祥安
Hsiang-An Fang
關鍵字: 水熱法;氧化鋅;鎂摻雜;奈米柱;紫外光感測器;hydrothermal method;ZnO;Mg-doped;nanorod;UV sensor
引用: [1] 馬遠榮,奈米科技,商周出版,ISBN:9861200053,2002。 [2] 國立科學工藝博物館,終身學習網路教材-奈米新世界,網址:http://nano.nstm.gov.tw/,上網日期:2017年12月22日。 [3] Y. F. Lin, and W. B. Jian, “The Impact of Nanocontact on Nanowire Based Nanoelectronics”, Nano Letters, vol. 8, no. 10, pp. 3146-3150, Aug. 2008. [4] 台灣區電機電子工業同業公會,“SEMI:半導體矽片會一直熱到2019,日台成最大贏家”,網址: http://www.teema.org.tw/exhibition-detail.aspx?infoid=21931,上網日期:2017年12月22日。 [5] K. M. Nair and Shashank Priya, Advances and Applications in Electroceram¬ics II, U.S.A: John Wiley & Sons, Inc. , 2012. [6] V. Teixeiraa, H. N. Cuia, and L. J. Meng et al. , “Amorphous ITO thin films prepared by DC sputtering for electrochromic applications”, Thin Solid Films, vol. 420, pp. 70-75, Dec. 2002. [7] J. Singh, P. Kumar, and K. S. Hui et al. , “Synthesis, band-gap tuning, struc¬tural and optical investigations of Mg doped ZnO nanowires”, CrystEngComm, vol. 14, pp. 5898-5904, May 2012. [8] N. Guo, X.Q. Wei. , and R. R. Zhao et al. , “Preparation and optical proper¬ties of Mg-doped ZnO nanorods”. Applied Surface Science, vol. 317, pp. 400–404, Oct. 2014. [9] S.J. Pearton, D.P. Norton, and K. Ip et al. , “Recent progress in progress-ing and properties of ZnO”, Progress in Materials Science, vol. 50, pp. 293–340, Mar. 2005. [10] N. Saito and H. Haneda, “Hierarchical structures of ZnO spherical parti-cles synthesized solvothermally”, Science and Technology of Advanced Mate¬rials, vol. 12, no. 6, 064707, Dec. 2011. [11] Q. Ahsanulhaq, A. Umar and Y. B. Hahn, “Growth of aligned ZnO nano-rods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties” , Nanotechnology, vol. 18, no. 11, 115603, Mar. 2007. [12] Bixia Lin, Zhuxi Fu and Yunbo Jia, “Green luminescent center in un-doped zinc oxide films deposited on silicon substrates”, Applied Physics Let¬ters , vol. 79, pp. 943-945, Aug. 2001. [13] 陳致宏,“利用遠距氧電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究”,碩士論文,義守大學材料科學與工程學系,2008。 [14] Z. Q. Xu, H. Deng, and J. Xie et al. , “Ultraviolet photoconductive detec-tor based on Al doped ZnO films prepared by sol–gel method”, Applied Sur¬face Science, vol. 253, no. 2, pp. 476-479, Nov. 2006. [15] 謝嘉民、賴一凡、林永昌等,“光激發螢光量測的原理、架構及應用”,奈米通訊,第12卷,第2期,第28–39頁,2005年6月。 [16] K. Vanheusden, C. H. Seager, and W. L. Warren et al. , ”Correlation be-tween Photoluminescence and oxygen vacancies in ZnO Phosphors” , Ap¬plied Physics Letters, vol. 68, no. 3, pp. 403-405, Jan. 1996. [17] K. Vanheusden, W. L. Warren, and C. H. Seage et al. , “Mechanisms be-hind green photoluminescence in ZnO phosphor powders” , Journal Ap-plied Physics, vol. 79, no. 10, pp. 7983-7990, May. 1996. [18] P. S. Xu, Y. M. Sun, and C. S. Shi et al. , “The electronic structure and spectral properties of ZnO and its defects”, Nuclear Instruments and Meth¬ods in Physics Research B, vol. 199, pp. 286-290, Jan. 2003. [19] L. Liao, H. B. Lu, and J. C. Li et al. , “Size dependence of gas sensitivity of ZnO nanorods” , Journal of Physical Chemistry C, vol. 111, no. 5, pp. 1900-1903, Feb. 2007. [20] 蔡裕榮、周禮君,“以溶膠凝膠法製備透明導電氧化物薄膜的探討”,化學,第60卷,第3期,第307–318頁,2002年9月。 [21] Y. C. Kong, D. P. Yu, and B. Zhang et al. , “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Applied physics letters, vol. 78, no. 4, pp. 407-409, Jan. 2001. [22] L. Liu, C. R. Gorla, and S. Liang et al. ,“Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, Chemistry and electronic materi¬als, vol. 29, no. 1, pp. 69-74, Jan. 2000. [23] J. Lothe, and G. M. Poundt, “Reconsiderations of nucleation theory” , The Journal of Physical chemistry, vol. 36, pp. 2080-2085, 1962. [24] W.J. Li, E. W. Shi, and W.Z. Zhong et al. , “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, vol. 203, no. 1-2, pp. 186-196, May. 1999. [25] Y. Sun, D. Jason Riley, and Michael N. R. Arshfold,“Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si sub-strates”, Journal of Physical Chemistry B, vol. 110, no. 31, pp. 15186-15192, Aug. 2006. [26] Q. Li, V. Kumar, and Y. Li et al. ,“Fabrication of ZnO nanorods and nano¬tubes in aqueous solutions”, Chemistry of materials, vol. 17, no. 5, pp. 1001-1006, Feb. 2005. [27] 鄭信民、林麗娟,“X 光繞射應用簡介”工業材料雜誌,第181期,2002年1月。 [28] L. E. Greene, M. Law, and J. Goldberger et al. ,“ Low-Temperature Wa-fer-Scale Production of ZnO Nanowire Arrays”, Angewandte Chemie Interna¬tional Edition, vol. 42, no. 26, pp. 3031-3034, Jul. 2003. [29] C. O. Chey, “Synthesis of ZnO and transition metals doped ZnO nanostruc¬tures, their characterization and sensing applications”, Doctoral Dis¬sertation, Linköping University, 2015. [30] L. Spanhel, and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concen-trated zinc oxide colloids”, Journal of the American Chemical Society, vol. 119, no. 8, pp. 2826-2833, Apr. 1991. [31] X. Zheng, Y. Sun, and X. Yan et al. , “High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors elec¬trodes by Al doping”, Journal of Colloid and Interface Science, vol. 484, pp. 155-161, Dec. 2016. [32] S. V. Kurudirek, N. E. Hertel, and B. D. B. Klein et al. , “Development of ZnO Nanorod-Based Scintillators Grown Under a Low-Temperature Hydro¬thermal Method for Use in Alpha-Particle and Thermal Neutron Detec¬tors”, IEEE Transactions on Nuclear Science, vol. 63, no. 6, pp. 2842-2848, Dec. 2016. [33] 林燈財,“摻雜銅氧化鋅奈米柱成核與成長控制之研究”,博士論文,國立中興大學電機工程學系,2014。 [34] Y. Gu, J. Qi, and Y. Zhang,“Surface Energy of In-Doped ZnO Studied by PAW+U Method”, Materials Science Forum, vol. 561-565, pp. 1861-1864, Oct. 2007. [35] 陳俊翰,“摻雜鎂氧化鋅薄膜與奈米柱陣列的特性與可見光感測器的應用”,碩士論文,國立中興大學電機工程學系,2014。 [36] N. C. S. Vieira, E. G. R. Fernandes, A. A. A. de Queiroz et al. , “Indium tin oxide synthesized by a low cost route as SEGFET pH sensor”, Materi¬als Research, vol. 16, no. 5, pp. 1156-1160, Sept. 2013. [37] C. Soci, A. zhang, and B. Xiang et al. , “ZnO Nanowire UV Photodetec-tors with High Internal Gain”, Nano Letters, vol. 7, no. 4, pp. 1003-1009, Apr. 2007. [38] P. C. Chang, Z. Fan, and C. J. Chien et al. , “High-performance ZnO nan-owire field effect transistors”, Applied Physics Letters, vol. 89, no. 13, pp. 133113, Sept. 2006.
摘要: 
本論文以水熱法製成一維摻鎂氧化鋅奈米柱陣列(Zn1-xMgxO),並且分為兩個部份進行探討:
第一個部份是分析水熱法製備奈米柱之成長過程。我們在室溫下置入樣品後再將溶液的溫度升至90℃,並且確認奈米柱的孕核及成長大約要在溫度70~80℃以上時才會發生,當達到穩定的溫度後軸向及徑向的生長速度將近似於線性關係,溶液的升溫則會增加奈米柱的成長速度,尤其對徑向成長的助益較大。另外我們也觀測到晶種層有部份厚度可能會參與到奈米柱成長並在最終轉變成為奈米柱的一部份。
第二個部份則是分析氧化鋅奈米柱陣列在不同溶液濃度、鎂摻雜條件下的微結構、光學及電性特性差異,並製成紫外光感測器分析奈米柱電性。為了使照光效率提高,我們特地使用透明ITO作為基板並從透明側照光避免光線被金屬電極遮住。為了使介面形成歐姆接觸,本研究在奈米柱陣列與銦金屬電極的界面之間增加了氧化鋅鋁(AZO)薄膜作為n+半導體。在實驗中我們發現到鎂摻雜會影響奈米柱的粗細,鎂摻雜濃度提高也會使亮、暗電流有下降的趨勢,而光感測器的靈敏度也會增加。最後,希望本論文的研究經驗可作為未來製作氧化鋅奈米柱陣列相關研究的參考依據。

In this thesis, one-dimensional Mg-doped ZnO nanorod arrays was made through hydrothermal method, and to be discussed by two sections:
The First section, I will analyze the growth of nanorods which made are through hydrothermal method. We put the sample into room-temperature solution and then heat the solution to 90°C, and we understand that nucleation of ZnO nanorods and its growth must be above specified temperature 70~80℃. When temperature is achieved and stable, growth rate of axial and radial is close to linear relation. Also, The heating process of liquid will increase nanorods growth rate, especially for radial direction. We also observe that thickness of seed layer may participate in growth of nanorods and become part of nanorods at the end.
In the second section, I will analyze the difference of microstructures、optical and electrical performance of ZnO nanorod arrays between different liquid densities, and condition of Mg doping. In order to analyze above characteristic, we also make UV sensor. In order to increase the efficiency of light, and to prevent light being covered by metal electrode, we select ITO as base material and make light through transparent side. In order to form ohmic contact on the interface, we add Al doped ZnO (AZO) films as n+ semiconductors between ZnO nanorod arrays and metal electrode. During experiment, we found Mg doping will affect the thickness of nanorods. Also increase density of Mg doping will decrease bright/dark current while sensitivity of light sensor will also increased. In the end, we wish this research experience will be an important reference for ZnO nanorod arrays production in the future.
URI: http://hdl.handle.net/11455/97122
Rights: 同意授權瀏覽/列印電子全文服務,2021-05-04起公開。
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-5104064023-1.pdf6.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.