Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97145
DC FieldValueLanguage
dc.contributor蔡志成zh_TW
dc.contributorJhy-Cherng Tsaien_US
dc.contributor.author蕭輔杰zh_TW
dc.contributor.authorFu-Chieh Hsiaoen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2017zh_TW
dc.date.accessioned2019-02-01T05:30:54Z-
dc.identifier.citation[Canny, 1986] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679-698, 1986. [蘇侃,2001] 蘇侃,混合潤滑之模型建立,國科會研究報告,2001。 [蔡政霖,2003] 蔡政霖,應用逆向工程技術於虛擬三次元量測系統之發展,國立成功大學機械工程學系碩士論文,2003。 [廖界程等人,2005] 廖界程等人,白光干涉系統之自動對焦之探討 ,AOI Forum & Show 2005。 [Costa1 & Hutchings, 2007] H. L. Costa and I. M. Hutchings, “Hydrodynamic Lubrication of Textured Steel Surfaces under Reciprocating Sliding Conditions,” Tribology International, Vol.40, 2007, pp.1227-1238. [Wan & Xiong, 2008] Y. Wan and D.-S. Xiong, “The Effect of Laser Surface Texturing on Frictional Performance of Face Seal,” Materials Processing Technology, Vol.197, 2008, pp.96–100. [King, 2008] R. King,基礎鏟花技術手冊,PMC手動及電動機械鏟花技術課程講義,2008。 [Wang et al, 2009] X. Wang, W. Liu, F. Zhou and D. Zhu, “Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts,” Tribology International, 2009, pp.1118–1123. [凌國夏,2009] 凌國夏,金屬加工表面形貌之摩擦特性研究,國立中央大學機械工程系碩士論文,2009。 [周睿程,2009] 周睿程,一種對於鏟花工件表面輪廓的光學量測法,國立臺灣大學機械工程系碩士論文,2009。 [林貞仁,2009] 林貞仁,“工具機精度與鏟花關係”,亞東學報,第5期,2009,37-65頁。 [陳玫君,2010] 陳玫君,利用逆向工程與計算流體力學探討實驗螺槳製作精度對其性能的影響,國立高雄海洋科技大學海洋工程科技研究所碩士論文,2010。 [克普典,2010] 克普典科技股份有限公司,滑動面耐磨片型錄,2010 [陳正達,2011] 陳正達,滑動面表面紋理之摩擦特性探討,國立中興大學機械工程系碩士論文,2011。 [練崇智,2011] 練崇智,近景掃描應用在逆向工程技術重建3D實體之研究,逢甲大學土木工程學系碩士論文,2011。 [莊朝盛,2012] 莊朝盛,機器視覺於鏟花承斑檢測之應用,國立勤益科技大學機械工程系碩士論文,2012。 [賴勇澍,2012] 賴勇澍,具斜楔油袋型紋理之滑動面摩擦特性探討,國立中興大學機械工程系碩士論文,2012。 [林明賢,2013] 林明賢,具混合型紋理滑動面之進給系統摩擦特性探討,國立興大學機械工程系碩士論文,2013。 [黃峻彥,2013] 黃峻彥,搭配CMOS相機與光罩之機器視覺系統於鏟花加工面檢測之研究,國立勤益科技大學機械工程系碩士論文,2013。 [Tang et al, 2013] W. Tang, Y. Zhou, H. Zhu and H. Yang, “The Effect of Surface Texturing on Reducing the Friction and Wear of Steel under Lubricated Sliding Contact,” Applied Surface Science, Vol.273, 2013, pp.199–204. [Kalam et al., 2013] N.W.M. Zulkifli, M.A. Kalam, H.H. Masjuki , M. Shahabuddin, R. Yunus, “Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant,” Applied energy Vol.54,2013,p167-173 [彭昭琳,2014] 彭昭琳,創新型無鏟花工具機硬軌之研發,國立興大學機械工程系碩士論文,2014。 [童冠敏,2015] 童冠敏,加工紋理應用於工具機硬軌之探討,國立興大學機械工程系碩士論文,2015。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97145-
dc.description.abstract滑動機構中的硬軌為重負載與重切削的工具機常採用之進給系統軌道,通常會在軌道的接觸面進行鏟花以便運動時使潤滑油進入接觸面以改善摩擦特性,但長期以來鏟花技術都依賴人工的方式完成,使得鏟花品質較難達到一致性得效果,無法有效掌控進給系統在滑動時之性能。本研究探討以雷射加工方式仿製人工鏟花之紋理,在滑動面上達到類似鏟花的效果,加工後並實際架設於進給平台量測其摩擦性能,驗證其效果。 本研究首先利用白光干涉儀拍攝人工鏟花面的主要形貌與特徵,並進一步分析其紋理特徵與形貌及輪廓,進一步將影像轉換成圖檔後利用雷射加工加工其形貌與輪廓,並與原人工鏟花紋理比對評估其相似性,更進一步將加雷射工之工件安裝摩擦測試平台進行摩擦量測,比較二者之摩擦特性表現。研究結果顯示,雷射加工之仿製紋理與原鏟花紋理之形貌均方根誤差(RMSE)在解析度512*512 points/mm^2下平均為10.39 µm/point,而其摩擦性能與原人工鏟花面相同甚至較佳,顯示本研究之成果可取代部份機械產業之人工鏟花,以提升硬軌之品質穩定性。zh_TW
dc.description.abstractHard rails are often used as the sliding mechanism in precision machinery, in particular in heavy-duty machine tools. In such a mechanism, scraping is employed in order to provide lubricant between the sliding surfaces. However, as scraping is conducted manually and it is very difficult to control the quality of contact that introduces variations of motion and performance. In this research, we investigated the machining of surface texture, mimic to manual scraping, by laser machining and compared the machining surface against the original manual scraping surface in both texture/profile error and their friction performance to verify the results. Surface texture of the manual scraped block is first measured using a surface profiler and geometric features of scraping marks are then analyzed. The surface texture is then transformed to a profile suitable for laser machining. The machined surface is then measured using the same profiler and sliding friction of both surfaces are tested under the same condition. The results showed that (i) The RMSE profile/texture error between the two surfaces is 10.39 µm/point under a 512*512 points/mm^2 measured resolution. (ii) The friction coefficient of the laser-machined block is better than that of the manual-scraped block. The results indicated that laser machining can be employed for surface scraping to improve the repeatability and quality of scraping.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究方法與流程 4 1.4 本文架構 6 第二章 人工鏟花之表面織構 7 2.1 人工鏟花 7 2.1.1 鏟花之功能 7 2.1.2鏟花面之摩擦特性 9 2.2鏟花之表面織構資料擷取 11 2.2.1 人工鏟花紋理影像 11 2.2.2 人工鏟花紋理特徵分析 16 第三章 以雷射加工仿製鏟花紋理 19 3.1 鏟花紋理轉換與加工 19 3.2 仿製加工面之紋理相似度評估 25 第四章 鏟花面之摩擦性能量測 35 4.1 摩擦量測規劃與設備架設 35 4.1.1 單一鏟花面摩擦量測規劃 35 4.1.2 進給平台之摩擦量測規劃與設備 37 4.2 單一鏟花面摩擦性能量測 38 4.2.1 人工鏟花面在不同速度與不同面壓之摩擦量測 38 4.2.2 雷射加工面在不同速度與不同面壓之摩擦量測 41 4.2.3 人工鏟花面與雷射加工面之摩擦比較 44 4.3 以進給平台量測摩擦性能 46 4.3.1人工鏟花面摩擦性能量測 46 4.3.2 雷射加工面之摩擦性能量測 48 4.3.3人工鏟花面與雷射加工面於進給平台之摩擦比較 50 4.4摩擦性能量測小結 54 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 參考文獻 58zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2020-08-25起公開。zh_TW
dc.subject硬軌zh_TW
dc.subject鏟花zh_TW
dc.subject雷射加工zh_TW
dc.subject摩擦特性zh_TW
dc.subjectHard railen_US
dc.subjectscrapingen_US
dc.subjectlaser machiningen_US
dc.subjectfriction characteristicsen_US
dc.title以雷射加工仿製鏟花表面特徵之研究zh_TW
dc.titleA Study on Duplicating Features of Scraping Surface Using Laser Machiningen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2020-08-25zh_TW
dc.date.openaccess2020-08-25-
item.openairetypethesis and dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
item.fulltextwith fulltext-
item.cerifentitytypePublications-
Appears in Collections:機械工程學系所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-106-7104061417-1.pdf4.63 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.