Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/97155
DC Field | Value | Language |
---|---|---|
dc.contributor | 蔡志成 | zh_TW |
dc.contributor | Jhy-Cherng Tsai | en_US |
dc.contributor.author | 賴昭如 | zh_TW |
dc.contributor.author | Chao-Ju Lai | en_US |
dc.contributor.other | 機械工程學系所 | zh_TW |
dc.date | 2017 | zh_TW |
dc.date.accessioned | 2019-02-01T05:30:56Z | - |
dc.identifier.citation | [1] 佐ぼ木信也,“表面ЪヱЗХцэ⑦ヲズプペЬьユп①Жみ特性ソ向上”,表面技術,No. 12, pp. 568-572, 2014. [2] 蘇侃,混合潤滑模型之建立,國科會研究報告,2001。 [3] U. Pettersson and S. Jacobson, 'Textured Surfaces for Improved Lubrication at High Pressure and Low Sliding Speed of Roller/Piston in Hydraulic Motors,' Tribology International, No. 40, pp. 355-359, 2007. [4] M. Nakano, A. Korenaga, K. Miyake, T. Murakami, Y. Ando, H. Usami and S. Sasaki,“Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient Under Lubricated Conditions,” Tribology Letter, pp. 131–137, 2007. [5] H. L. Costa and I. M. Hutchings, “Hydrodynamic Lubrication of Textured Steel Surfaces under Reciprocating Sliding Conditions,”Tribology International, No. 40, pp. 1227-1238, 2007. [6] Y. Wan and D.-S. Xiong, “The Effect of Laser Surface Texturing on Frictional Performance of Face Seal,”Journal of Materials Processing Technology, No. 197, pp. 96–100, 2008. [7] X. Wang, W. Liu, F. Zhou and D. Zhu,“Preliminary Investigation of the Effect of Dimple Size on Friction in Line Contacts,”Tribology International, pp. 1118–1123, 2009. [8] 陳正達,滑動面表面紋理之摩擦特性探討,國立中興大學機械工程系碩士論文,2011。 [9] A. Golchin, G. F. Simmons and S. B. Glavatskih, Break-Away Friction of PTFE Materials in Lubricated Conditions,”Tribology International, No. 48, pp. 54–62, 2012. [10] 林明賢,具混合型紋理滑動面之進給系統摩擦特性探討,國立興大學機械工程系碩士論文,2013。 [11] 彭昭琳,創新型無鏟花工具機硬軌之研發,國立興大學機械工程系碩士論文,2014。 [12] 童冠敏,加工紋理應用於具機硬軌之探討,國立興大學機械工程系碩士論文,2015。 [13] D. B. Hamilton, J. A. Walowit and C. M. Allen,“A Theory of Lubrication by Micro-Irregularities,”Journal of Basic Engineering, No. 41, pp. 177-185, 1966. [14] W. Tang, Y. Zhou, H. Zhu and H. Yang,“The Effect of Surface Texturing on Reducing the Friction and Wear of Steel under Lubricated Sliding Contact,”Applied Surface Science, pp. 199–204, 2013. [15] K. Gertzos, P. Nikolakopoulos and C. Papadopoul,“CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant,” Tribology International, pp. 1190-1204, 2008. [16] 王信誌與蔡志成,“具微型油溝滑塊之滑動摩擦分析”,第十六屆全國機構與機器設計學術研討會論文集,台灣新竹,2013。 [17] Y. Zhang, X. Zhang and G. Matsoukasb, “Numerical Study of Surface Texturing for Improving Tribological Properties of Ultra-High Molecular Weight Polyethylene,” Biosurface and Biotribology, pp. 270-277, 2015. [18] A. T. Cross, F. Sadeghi, L. Cao, R. Rateick JR and S. Rowan,“Flow Visualization in a Pocketed Thrust Washer,”Tribology Transactions, pp. 571-581, 2012. [19] 黃品綸,應用加工紋理之滑塊摩擦特性分析,國立興大學機械工程系碩士論文,2016。 [20] Bruker Nano Surfaces,“Generating a Stribeck Curve in a Reciprocating Test,”http://www.azom.com/article.aspx?ArticleID=12810. [21] A. S. Akhmatov,“Molecular Physics of Boundary Friction,”Israel Programme for scientific Translation, pp. 310-311, 1966. [22] “Reynolds Number,” Wikipedia. https://zh.wikipedia.org/zh-tw/%E9%9B% B7%E8%AF%BA%E6%95%B0. [23] M. Bryant, Hydrodynamic Lubrication, UT Mechanical Engineering, 2005. [24] D. Gropper, L. Wang and T. J. Harvey, “Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings,” Tribology International, No. 94, pp. 509-529, 2016. | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/97155 | - |
dc.description.abstract | 機械導軌的主要功能在於承載負荷及導向,尤其高負載移動的機械需採用面與面接觸滑動的硬式導軌,此類面接觸的導軌需潤滑以降低摩擦,文獻上雖有依據經驗於表面加工紋理再經由實驗評估其運動摩擦性能,但缺乏理論分析,亟需探討具紋理之滑動面運動時的潤滑與摩擦模型。 本研究利用CAE軟體建構滑動面之運動摩擦模型,首先以半模型類比處理空蝕課題的Half-Sommerfeld邊界條件,構築以油袋產生的承載力與負荷重量達到平衡時的等效油膜厚度之計算模型,分析其於平衡狀態時之摩擦力,並藉由量測數據比較,顯示該理論模型與量測結果具有相關性,但二者仍有明顯差距。研究進一步考量摩擦面滑動時產生的傾斜角,將滑動攻角導入摩擦模型中,亦即負荷由油袋以及滑動面之承載力共同承受,研究結果顯示在面壓4.141KPa條件下,滑動攻角在14×10^-6rad以及面壓9.886KPa條件下,滑動攻角在8×10^-6rad時所造成的液動壓力與量測結果相近,得到較水平滑動時更為合理的結果。本研究之主要貢獻在於建構一具紋理之滑動面的潤滑摩擦模型,解決長期以來難以處理摩擦面油膜極小深寬比的課題,並經量測比較其合理性。 | zh_TW |
dc.description.abstract | The function of the guideway is to carry the load and guide the direction of motion. The hard rail, a surface-to-surface contact guideway, is particularly employed in the situation of motion at high loading. In such a guideway, lubrication between contacted surfaces is important. Although literatures showed texture patterns, serving as lubricant reservoir, are design and fabricated based on empirical methods, it is necessary to develop a theoretical model for analyzing lubrication and friction characteristics of sliding surface with textures. In this paper, CAE software is employed to construct the lubrication and friction model for sliding surface with simple texture. First, the half-Sommerfeld boundary condition is used to simulate the cavitation effect. The effective thickness of lubricant and the corresponding friction are then computed based on the load and the bearing capacity of the oil pocket. Experiments to measure the friction forces are then conducted for comparisons. It showed that there exists an offset between theoretical results and experimental data, though both results showed the same tendency. Considering the lubricant induces an angle of attack during sliding, the friction model with an attack angle is constructed for exploring the loading capacity, which means the load is supported by both oil pocket and sliding surface. Results showed that the hydrodynamic pressure caused by the angle of attack at 1.4×10^-5 rad under 4.141 KPa surface pressure and at 8×10^-6 rad under 9.886 KPa surface pressure are close to experimental results. This research work provided a method to solve the problem in analyzing the loading and friction of sliding surfaces with textures due to tiny aspect ratio of lubricant film. The friction model for sliding surface with textures is constructed and verified its reasonability through experiments. | en_US |
dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 符號表 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究方法與流程 6 1.4 本文架構 7 第二章 滑動面摩擦特性分析 9 2.1 滑動面摩擦特性分類 9 2.2 滑動摩擦之機制分析 11 2.2.1 平行板滑動面液動潤滑模型 11 2.2.2 非均勻膜厚所造成的液動壓力模型 13 2.3 具紋理之滑動摩擦之機構分析 15 2.3.1 統御方程式及假設條件 15 2.3.2 空穴效應 16 第三章 滑動面運動摩擦模型建構 18 3.1 潤滑油模型建構 18 3.1.1 探討對象 18 3.1.2 網格類型與網格數差異之探討 20 3.1.3 邊界條件 22 3.2 平板模型之比較 23 3.3 具滑動攻角模型之比較 25 3.4 單紋理模型之建構 26 第四章 滑動面摩擦量測與模型之比較 30 4.1 滑塊運動摩擦量測 30 4.1.1 量測設備與架設 30 4.1.2 量測數據 31 4.2 量測數據與數值分析之比對 33 4.2.1 水平模型 33 4.2.2 具滑動攻角模型 37 第五章 結論與未來展望 44 5.1 結論 44 5.2 未來展望 44 參考文獻 45 附錄:量測設備與材料規格 48 | zh_TW |
dc.language.iso | zh_TW | zh_TW |
dc.rights | 同意授權瀏覽/列印電子全文服務,2020-08-24起公開。 | zh_TW |
dc.subject | 表面紋理 | zh_TW |
dc.subject | 潤滑摩擦模型 | zh_TW |
dc.subject | 油膜厚度 | zh_TW |
dc.subject | 滑動攻角 | zh_TW |
dc.subject | surface texture | en_US |
dc.subject | lubrication and friction model | en_US |
dc.subject | thickness of lubricant film | en_US |
dc.subject | sliding angle of attack | en_US |
dc.title | 具紋理之滑動面潤滑摩擦模型建構與分析 | zh_TW |
dc.title | Construction and Analysis of Lubrication and Friction Model for Sliding Surface with Textures | en_US |
dc.type | thesis and dissertation | en_US |
dc.date.paperformatopenaccess | 2020-08-24 | zh_TW |
dc.date.openaccess | 2020-08-24 | - |
item.openairetype | thesis and dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | zh_TW | - |
item.grantfulltext | restricted | - |
item.fulltext | with fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 機械工程學系所 |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
nchu-106-7103061113-1.pdf | 2.72 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.