Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97226
標題: 車銑複合機主軸頭熱平衡優化設計分析與實機驗證
An experimental and numerical study of thermal balance optimal design for a CNC horizontal turning center spindle head
作者: 陳美惠
Mei-Hui Chen
關鍵字: 工具機;熱變形;有限元素分析;熱平衡;優化分析;Turning center machine;Thermal deformation;Finite element method;Thermal balance;Optimal design.
引用: [1] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools — a review, International Journal of Machine Tools and Manufacture, 40(9) (2000) 1235-1256. [2] R. Ramesh, M.A. Mannan, A.N. Poo, Error compensation in machine tools — a review: Part II: thermal errors, International Journal of Machine Tools and Manufacture, 40(9) (2000) 1257-1284. [3] C. Brecher, P. Hirsch, M. Weck, Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data, CIRP Annals - Manufacturing Technology, 53(1) (2004) 299-304. [4] M. Weck, P. McKeown, R. Bonse, U. Herbst, Reduction and Compensation of Thermal Errors in Machine Tools, CIRP Annals - Manufacturing Technology, 44(2) (1995) 589-598. [5] S.N. Grama, A. Mathur, R. Aralaguppi, T. Subramanian, Optimization of High Speed Machine Tool Spindle to Minimize Thermal Distortion, Procedia CIRP, 58 (2017) 457-462. [6] G. Spur, E. Hoffmann, Z. Paluncic, K. Benzinger, H. Nymoen, Thermal Behaviour Optimization of Machine Tools, CIRP Annals - Manufacturing Technology, 37(1) (1988) 401-405. [7] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, K. Wegener, Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, 61(2) (2012) 771-791. [8] Y. Li, W. Zhao, S. Lan, J. Ni, W. Wu, B. Lu, A review on spindle thermal error compensation in machine tools, International Journal of Machine Tools and Manufacture, 95 (2015) 20-38. [9] T. Liu, W. Gao, Y. Tian, D. Zhang, Y. Zhang, W. Chang, Power matching based dissipation strategy onto spindle heat generations, Applied Thermal Engineering, 113 (2017) 499-507. [10] T. Liu, W. Gao, Y. Tian, H. Zhang, W. Chang, K. Mao, D. Zhang, A differentiated multi-loops bath recirculation system for precision machine tools, Applied Thermal Engineering, 76 (2015) 54-63. [11] F. Pusavec, D. Kramar, P. Krajnik, J. Kopac, Transitioning to sustainable production – part II: evaluation of sustainable machining technologies, Journal of Cleaner Production, 18(12) (2010) 1211-1221. [12] Aspects of Energy Effi ciency in Machine Tools, in: Heidenhain (Ed.), 2010. [13] N. Diaz, E. Redelsheimer, D. Dornfeld, Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use, in: J. Hesselbach, C. Herrmann (Eds.) Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, May 2nd - 4th, 2011, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 263-267. [14] P.-C. Tseng, J.-L. Ho, A Study of High-Precision CNC Lathe Thermal Errors and Compensation, The International Journal of Advanced Manufacturing Technology, 19(11) (2002) 850-858. [15] J.-H. Lee, S.-H. Yang, Statistical optimization and assessment of a thermal error model for CNC machine tools, International Journal of Machine Tools and Manufacture, 42(1) (2002) 147-155. [16] Z. Haitao, Y. Jianguo, S. Jinhua, Simulation of thermal behavior of a CNC machine tool spindle, International Journal of Machine Tools and Manufacture, 47(6) (2007) 1003-1010. [17] R.J. Goldstein, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh, R. Mittal, Heat transfer—A review of 2005 literature, International Journal of Heat and Mass Transfer, 53(21) (2010) 4397-4447. [18] T. Maier, M.F. Zaeh, Modeling of the Thermomechanical Process Effects on Machine Tool Structures, Procedia CIRP, 4 (2012) 73-78. [19] T.-Y. Chen, W.-J. Wei, J.-C. Tsai, Optimum design of headstocks of precision lathes, International Journal of Machine Tools and Manufacture, 39(12) (1999) 1961-1977. [20] S.R. Babu, V.P. Raja, P.R. Thyla, M. Thirumalaimuthukumaran, Prediction of transient thermo-mechanical behavior of the headstock assembly of a CNC lathe, The International Journal of Advanced Manufacturing Technology, 74(1) (2014) 17-24. [21] C. Zhao, X. Guan, Thermal Analysis and Experimental Study on the Spindle of the High-Speed Machining Center, AASRI Procedia, 1 (2012) 207-212. [22] M. Mori, H. Mizuguchi, M. Fujishima, Y. Ido, N. Mingkai, K. Konishi, Design optimization and development of CNC lathe headstock to minimize thermal deformation, CIRP Annals - Manufacturing Technology, 58(1) (2009) 331-334. [23] S. Mukherjee, A. Kamal, K. Kumar, Optimization of Material Removal Rate During Turning of SAE 1020 Material in CNC Lathe using Taguchi Technique, Procedia Engineering, 97 (2014) 29-35. [24] C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA, Journal of Cleaner Production, 53 (2013) 195-203. [25] Ansys,Ansys Fluent Theory Guide,2013, in. [26] NSK,Super precision bearings,2011, in. [27] Fanuc AC spindle motor αi series, in, pp. 199. [28] D. Chen, M. Bonis, F. Zhang, S. Dong, Thermal error of a hydrostatic spindle, Precision Engineering, 35(3) (2011) 512-520. [29] D.P. DeWitt, Fundamentals of Heat and Mass Trans, 6 ed., 2005. [30] B. Özerdem, Measurement of convective heat transfer coefficient for a horizontal cylinder rotating in quiescent air, International Communications in Heat and Mass Transfer, 27(3) (2000) 389-395. [31] Y.-D.K. S-Y. Chen, S-M. Lee, J-Y Chang, J-T. Lin, T-S. Lin,, Numerical Design Optimization of the Ejector Mixer with CFD Simulation, 2010 CFD Taiwan, (2010). [32] F.L.M. Delbressine, G.H.J. Florussen, L.A. Schijvenaars, P.H.J. Schellekens, Modelling thermomechanical behaviour of multi-axis machine tools, Precision Engineering, 30(1) (2006) 47-53.
摘要: 
先進車铣複合機的機台結構設計因功能、轉速以及切削需求逐漸增加而日益複雜,然而其對於高剛性、輕量化與熱穩定性的機台設計技術需求卻不斷提升, 並且要在重切削或是快速攻牙時都能夠達到穩定且長時間的高加工精度。一般機台結構設計分析包含靜態剛性與共振頻率模態分析,關於機台冷卻以及熱誤差控制的部分則大多參考設計經驗搭配溫升熱補償技術。但是國外許多先進工具機業者近年來開始採用優化分析方法協助機台結構的設計與開發,同時也結合熱傳、流體動力學與結構力學的多重物理耦合分析進行工具機台結構的熱親和(Thermo-Friendly)設計。這些新的工具機設計技術皆已成為國外先進工具機業者的主流設計概念。因此,發展結合工具機結構剛性、動態特性、熱變形等多重物理現象的分析模擬技術,對於提升高階高轉速車铣複合機的設計優化與開發上的自主性和競爭力極為關鍵。
本研究以熱傳學、流體力學與結構熱彈性力學等工具機相關多重物理現象的學理為基礎,使用有限元素方 法快速建立一國產臥式車铣複合機主軸頭區域(包括結構與板金內部區域)的熱-流-固多重物理耦合模擬分析模型,探討分析此機台主軸頭結構的靜態、動態熱傳與熱變形特性,並搭配經由實驗量測所建立的資料庫,驗證與修正基礎個案的模擬模型,使其能夠可靠地提供機台關鍵熱傳特性,進而可作為深入分析的依據與改善熱誤差的應用,經由模擬分析得到機台關鍵溫度監測與控制位置。本研究接著以此模型為基礎,結合優化分析技術,提出風扇以及主軸頭板金區域內部風場引導的設計方案,以改善主軸頭區域的熱平衡性與穩定性,進而提升加工精度,並且進行實機驗證。

The design of the advanced turning center machine tools is becoming more and more complicated due to the increasing demand on function, cutting speed and cutting quality. The requirement for high rigidity, light weight and thermal stability of the machine tool is increasing, while for a both fast tapping and heavy duty cutting a stable and long term high processing accuracy are needed to be achieved. In the past, most machine tool designers elaborated static and modal analyses in the machine structural design, and relied on the empirical guideline for the cooling system design and compensation techniques for mitigating thermal errors of the machine tools. In recent years, however, emerging numbers of advanced machine tool manufacturers have been applying multi-physics analysis to assist the design and development of the machine utilized for and thermal stability optimizations such as the Thermo-Friendly design concept. Therefore, the development of the analysis and optimal design ability that combines the structural rigidity, dynamic characteristics and thermal deformation stability is essential to the competitiveness of modern machine tool designers.
In this thesis, experimental and numerical studies of the heat transfer and thermal deformations for a real computer numerical control (CNC) horizontal turning center were conducted. In the simulation section, a multi-physics model based on the fluid dynamics, heat transfer and thermo-elasticity of the spindle head region including the structure and air flow inside the enclosure was established using a finite element method software (ANSYS Fluent). Experimental measurements of the spindle head temperature and the cutting point deformation are used to verify and correct the simulation model of the basic case.
The results of the analyses thus provide the insights for the thermal characteristics of the machine. The simulation model in conjunction with an optimization analysis was thus used for improving the thermal error, for the machine with the information of critical locations and parameters for temperature monitoring and control that corresponds to the Thermal Balance concept. Based on the analyzed results, the design of the cooling fan circulation of the spindle head region was proposed and experimentally tested. It is shown that the appropriate design for the location of the fan can effectively improve the thermal deformation of the spindle head and therefore improve the precision of machining.
URI: http://hdl.handle.net/11455/97226
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104061215-1.pdf5.77 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.