Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97275
標題: 台灣家計部門能源需求分析-分量迴歸之應用
Analysis of Taiwan Household Energy Demand- An Application of Quantile Regression
作者: 洪逢仁
Feng-Jen Hung
關鍵字: 家戶能源需求;分量迴歸;近似理想需求體系;價格需求彈性;支出彈性;household energy demand;Quantile Regression;Almost Ideal Demand System;price elasticity of demand;expenditure elasticity.
引用: 中文部份: 汪曉威,2013。「台灣汽油影響因素之探討」,國立中央大學產業經濟研究所碩士學位論文。 莊家彰 & 管中閔. (2005). 台灣與美國股市價量關係的分量迴歸分析. 經濟論文, 33(4), 379-404. 張雯筑,2017。「家計部門能源需求之價格及支出彈性估計」,國立中興大學應用經濟學系所碩士學位論文。 陳英慧,2004。「汽油需求影響因素之探討:以台灣自用小客車為例」,國立中央大學產業經濟研究所碩士學位論文。 陳建良. (2007). 台灣公私部門工資差異的擬真分解-分量迴歸分析. 經濟論文,35(4), 473-520. 陳建良 & 管中閔. (2006). 台灣工資函數與工資性別歧視的分量迴歸分析. 經濟論文, 34(4), 435-468. 劉鋼, 蔡孟蓉, & 崔曉倩. (2012). 臺灣家庭結構與外食支出變動: 分量迴歸與擬真分解之應用. 農業經濟叢刊, 17(2), 29-74. 鄭心佩,2003。「台灣油品市場價格策略和需求效果支實證分析」,國立台灣科技大學企業管理系碩士學位論文。 顏誌緯,2001。「影響我國家計部門汽油需求要因之探討」,淡江大學產業經濟研究所碩士學位論文。 英文部分: Akinboade, O. A., Ziramba, E., & Kumo, W. L. (2008). The demand for gasoline in South Africa: An empirical analysis using co-integration techniques. Energy Economics, 30(6), 3222-3229. Alves, D. C., & da Silveira Bueno, R. D. L. (2003). Short-run, long-run and cross elasticities of gasoline demand in Brazil. Energy Economics, 25(2), 191-199. Archibald, R., & Gillingham, R. (1981). A decomposition of the price and income elasticities of the consumer demand for gasoline. Southern Economic Journal, 1021-1031. Brounen, D., Kok, N., & Quigley, J. M. (2012). Residential energy use and conservation: Economics and demographics. European Economic Review, 56(5), 931-945. Cao, J., Ho, M. S., & Liang, H. (2014, June). Household energy demand in Urban China: Accounting for regional prices and rapid income change. In World Congress on Environmental and Resource Economists. Chamberlain, G. (1994). Quantile regression, censoring, and the structure of wages. In Advances in econometrics: sixth world congress (Vol. 2, pp. 171-209). Cheung, K. Y., & Thomson, E. (2004). The demand for gasoline in China: a cointegration analysis. Journal of Applied Statistics, 31(5), 533-544. Deaton, A., & Muellbauer, J. (1980). An almost ideal demand system. The American economic review, 70(3), 312-326. Eltony, M. N., & Al-Mutairi, N. H. (1995). Demand for gasoline in Kuwait: an empirical analysis using cointegration techniques. Energy economics, 17(3), 249-253. Filippini, M. (1995). Electricity demand by time of use an application of the household aids model. Energy Economics, 17(3), 197-204. Green, R., & Alston, J. M. (1990). Elasticities in AIDS models. American Journal of Agricultural Economics, 72(2), 442-445. Huang, W. H. (2015). The determinants of household electricity consumption in Taiwan: Evidence from quantile regression. Energy, 87, 120-133. Kayser, H. A. (2000). Gasoline demand and car choice: estimating gasoline demand using household information. Energy economics, 22(3), 331-348. Kaza, N. (2010). Understanding the spectrum of residential energy consumption: a quantile regression approach. Energy policy, 38(11), 6574-6585. Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50. Koenker, R., & Bassett Jr, G. (1982). Robust tests for heteroscedasticity based on regression quantiles. Econometrica: Journal of the Econometric Society, 43-61. Koenker, R., & Hallock, K. F. (2001). Quantile regression. Journal of economic perspectives, 15(4), 143-156. Leontief, W. (1947). Introduction to a theory of the internal structure of functional relationships. Econometrica, Journal of the Econometric Society, 361-373. Loi, T. S. A., & Le Ng, J. (2018). Analysing households’ responsiveness towards socio-economic determinants of residential electricity consumption in Singapore. Energy Policy, 112, 415-426. Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(Jun), 983-999. Narayan, P. K., Smyth, R., & Prasad, A. (2007). Electricity consumption in G7 countries: A panel cointegration analysis of residential demand elasticities. Energy policy, 35(9), 4485-4494. Ngui, D., Mutua, J., Osiolo, H., & Aligula, E. (2011). Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS). Energy policy, 39(11), 7084-7094. Ramanathan, R. (1999). Short-and long-run elasticities of gasoline demand in India: An empirical analysis using cointegration techniques. Energy economics, 21(4), 321-330. Sono, M. (1961). The effect of price changes on the demand and supply of separable goods. International Economic Review, 2(3), 239-271. Valenzuela, C., Valencia, A., White, S., Jordan, J. A., Cano, S., Keating, J., ... & Potter, L. B. (2014). An analysis of monthly household energy consumption among single-family residences in Texas, 2010. Energy Policy, 69, 263-272. Variyam, J. N. (2003). Factors affecting the macronutrient intake of US adults (No. 184322). United States Department of Agriculture, Economic Research Service. Xiao, N., Zarnikau, J., & Damien, P. (2007). Testing functional forms in energy modeling:An application of the Bayesian approach to US electricity demand. Energy Economics, 29(2), 158-166. Yasar, M., Nelson, C. H., & Rejesus, R. (2006). Productivity and exporting status of manufacturing firms: Evidence from quantile regressions. Review of World Economics, 142(4), 675-694. 網站資源: 台灣中油股份有限公司:https://new.cpc.com.tw 台灣電力公司:https://www.taipower.com.tw/ 行政院主計總處-家庭收支調查:https://www.dgbas.gov.tw/ 行政院環境保護署:https://www.epa.gov.tw/ 經濟部能源局:https://www.moeaboe.gov.tw/ International Energy Agency (IEA):http://www.iea.org/
摘要: 
近年來,國內能源改革問題備受矚目,勢必對能源價格產生衝擊,然而家戶部門在能源與電力使用成長率上,在各部門中皆是排名首位,且家戶部門在能源消費上呈現多樣性,更與民眾生活有密切相關,所以在減少能源使用上家戶部門扮演重要的角色。然而,不同之家戶對於能源消費存在著差異,因此本研究藉由分量迴歸(Quantile Regression)來分析能源消費較高與較低的家戶,並且結合近似理想需求體系(Almost Ideal Demand System, AIDS)模型,建立家戶部門能源需求體系模型,求得各項高、中、低能源消費的需求價格彈性與支出彈性,進而分析家庭社經背景對不同能源支出的影響。
分析結果顯示戶長年齡、戶內人口數、住宅面積、戶長性別、戶長教育程度、住宅自有、戶內有年長者與居住區域等變數對於家戶各項能源的高、中、低支出有不同程度的影響。在彈性估計的部分,汽油價格彈性皆呈現無彈性,天然氣價格彈性在中高分量呈現富有彈性,電力未受補償價格彈性均呈現富有彈性,且高分量的彈性值大於低分量,因此當能源價格上漲時,天然氣與電力需求量減少的幅度將會大於汽油需求量減少之幅度。支出彈性的部分,當能源支出隨著所得提高時,電力與天然氣消費上升的幅度大於其他能源,且電力消費在高分量上升的幅度最大。最後,為使家戶部門能有效降低能源之使用,提出相關建議:一、電價調整,將累進電價之級距差異改為遞增。二、致力開發節能設備與鼓勵家戶購買節能設備。三、鼓勵民眾多搭乘大眾交通工具,汰換燃油汽機車,鼓勵購買電動車。四、將現行天然瓦斯的訂價方式改為累進費率。

In recent years, the issue of domestic energy reform has attracted much attention, and has an impact on energy prices. However, the household sector ranks first in all sectors in terms of the growing rates of energy use. And the household sector is diverse in energy consumption and more closely related to people’s daily life. Therefore, the household sector plays an important role in reducing energy use. However, different households have differences in energy consumption. This study uses the Quantile Regression to analyze households with higher and lower energy consumption and combines with the Almost Ideal Demand System (AIDS) model to establish a model of the energy demand system of the household sector. The elasticity of demand price and expenditure with high, medium and low energy consumption are obtained, and then the influences of family social background on different energy expenditures are analyzed.
The empirical results show the different impacts with high, medium and low expenditure on the age of the household head, the number of household members, the size of house, the gender and the education level of household head, the ownership of house, the number of seniors and the living area in the household energy of the households. In the part of elastic estimation, the price elasticity of gasoline is inelastic, the elasticity of natural gas price is elastic in the middle and high quantile, the elasticity of the uncompensated price of electricity is elastic, and the elasticity of high quantile is greater than the low quantile. Hence, when energy prices rise, the reduction of demand on natural gas and electricity will be greater than the reduction of demand on gasoline. In the part of expenditure elasticity, when energy expenditure increases with income, electricity and natural gas consumption will increase more than other energy and the rising extent of electricity consumption is obvious at the high quantile. In the end, in order to reduce the use of energy in the household sector, this study provides some recommendations: first, the class interval of the progressive electricity pricing rates is changed to increment. Second, encourage firms to develop energy-saving equipment and households to purchase. Third, encourage the public to take public transportation and purchase electric vehicles, replace fuel-electric locomotives and cars. Fourth, change the current natural gas pricing method to a progressive pricing rate.
URI: http://hdl.handle.net/11455/97275
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-13起公開。
Appears in Collections:應用經濟學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105034018-1.pdf1.62 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.