Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97493
標題: 建立巢狀模擬系統評估河道泥砂運移之研究-以新竹鳳山溪流域為例
Establishing a Nested Modeling System to Study the Fluvial Sediment Transport – a case study of the Fengshan Creek basin of Taiwan
作者: 黃晶瑩
Jing-Ying Huang
關鍵字: 巢狀模擬系統;SRH-2D;動床模式;CAMP1DF;敏感度分析;Nested modeling system;SRH-2D;mobile bed model;CAMP1DF;sensitivity analysis
引用: 1. 王文江 (2013),「水利工程中之泥砂問題(增訂版)」,財團法人中興工程科技研究發展基金會。 2. 王如意、易任 (2001),「應用水文學」,科技圖書出版社。 3. 王筱雯、郭偉丞、張家豪 (2013),「七家灣溪拆壩後之河道演變模式」,中華水土保持學報。 4. 毛福銘 (1992),「結合地理資訊系統與SCS無因次單位歷線以推估小集水區逕流之可能性探討」,國立中興大學水土保持學系,碩士論文。 5. 內政部國土測繪中心 (2009),「國土利用調查作業工作總報告」,中華空間資訊學會。 6. 李文獻 (2012),「二維水理輸砂模式於壩體移除分析應用之探討」,國立台灣大學土木工程學系,碩士論文。 7. 李光敦、洪夢秋、林怡廷、張進鑫 (2006),「集水區降雨逕流歷程之連續性模擬」,農業工程學報,第52卷。 8. 邱彥瑜、吳宜嶺、楊昇學、鍾仁凱、謝東洲、葉克家 (2017),「含砂濃度差異對河流地貌變化之影響」,臺灣水利,第65卷,第4期。 9. 林耕百 (2015),「應用集水區耦合型模式於地下水補注之研究-以屏東平原為例」,國立中興大學土木工程學系,碩士論文。 10. 郭文達、洪健豪 (2015),「礫石河床橋墩沖刷現場觀測與數值模擬」,臺灣水利,第63卷,第1期。 11. 郭文達、洪建豪、王豪偉、陳政欣 (2014),「濁水溪名竹大橋河床沖刷觀測」,台灣颱風洪水研究中心成果報告。 12. 菅原正巳 (1972),「流出解析法」,共立出版株式会社。(日文) 13. 陳思廷 (2008),「不同輸砂公式對河道沖淤影響之研究」,國立交通大學土木工程系,碩士論文。 14. 黃奕程 (2015),「整合定量降雨及水文模式應用於洪水預報-以基隆河流域為例」,國立中央大學土木工程學系,碩士論文。 15. 黃誌川、范成棟、嚴漢偉、詹仕堅、徐美玲 (2003),「利用網格式數值地形模型推估地形特徵之分析工具」,中華地理資訊學會年會暨學術研討會論文集。 16. 張浩肇 (2012),「砂質河段懸移床砂載之探討-以濁水溪下游為例」,國立中興大學土木工程學系,碩士論文。 17. 陳奕全 (2017),「水文模式結合季長期天氣展望推估鳳山溪流域地下水位變化」,國立中央大學土木工程學系,碩士論文。 18. 陳柏翰 (2007),「河床質粒徑於河川縱、橫向之變化-以頭前溪與鳳山溪為例」,國立交通大學土木工程系,碩士論文。 19. 葉克家、陳彥璋、吳偉明、廖仲達 (2015),「台灣河川輸砂公式建置及應用研究(1/3)」,水利署建教合作報告。 20. 經濟部水利署 (2012),「鳳山溪大斷面測量計畫(縱斷面橫斷面圖及跨河構造物斷面圖) ,第二河川局。 21. 經濟部水利署 (2014),「鳳山溪流域(含支流霄裡溪)治理規劃檢討成果報告」,水利規劃試驗所。 22. 經濟部水利署 (2014),「鳳山溪水系河川情勢調查報告」,水利規劃試驗所。 23. 經濟部水利署 (2015),「SRH 數值模式應用於臺灣案例河川之研究」,水利規劃試驗所。 24. 經濟部水利署 (2016),「臺美水資源發展技術支援協議第八號附錄-河相動力學及河道二維數值模式」,水利規劃試驗所。 25. 廖仲達 (2013),「軟岩河床沖刷動床數值模式之研發與應用」,國立交通大學土木工程系,博士論文。 26. 蔡忠遠 (2015),「探討土地利用和氣候變遷下鳳山溪流域地下水位及流量的影響」,國立中央大學土木工程學系,碩士論文。 27. 劉柏傑 (2009),「一維軟弱岩盤河道侵蝕數值模式之研發與應用」,國立交通大學土木工程系,碩士論文。 28. 歐信宏 (2001),「HEC-HMS 降雨—逕流模式應用之研究」,國立成功大學水利及海洋工程學系,碩士論文。 29. 歐陽慧濤、喻新、賴志鈞、陳怡君 (2008),「HEC-HMS 模式最佳化分析工具於流域參數檢定之應用-以蘭陽溪流域為例」,國立宜蘭大學工程學刊第四期,75-84頁。 30. 盧昭堯、王傳益、蘇志強 (2010),「大甲溪河段輸砂特性試驗研究(3/3)」,經濟部水利署水利規劃試驗所委託研究計畫成果報告。 31. 錢寧、萬兆惠 (1983),「泥沙運動力學」,科學出版社。 32. 謝慧民、李鴻源、賴進松 (2013),「複雜河系沖淤模式NETSTARS V3.0使用者技術手冊」,台灣首府大學資訊與多媒體設計學系研究報告第10201號。 33. Baptista, A. M., 'Solution of advection-dominated transport by Eulerian - Lagrangian methods using the backward methods of characteristics.', Ph.D. Dissertation. Dept. of Civil Eng., MIT, 1987. 34. Blench, T., 'Coordination in mobile-bed hydraulics. Journal of Hydraulics Division.', Proc. ASCE, Vol. 95, Nol. HY6, pp. 1871-1988, 1969. 35. Brian, C. H. and David, C. C., 'Integration of radar rainfall into hydrologic models.', Canada, R3T 5V6, 2005. 36. Chow, V. T., Maidment, D. R., and Mays, L. W., 'Applied Hydrology.', McGraw Hill., pp.147-150, 1988. 37. Cowan, W. L., 'Estimating hydraulic roughness coefficients.', Agricultural Engineering, v. 37, no. 7, p. 473-475, 1956. 38. DuBoys, M. P., 'Studies of the diet and the action exerted by the waters on a bed of gravel.', Idefinitely Absorbable. Annals of Points and Pavements, Sep. 5, 18, 141-195, 1879. 39. Einstein, H. A., 'The Bed-Load Function for Sediment Transportation in Open Channel Flows.', USDA Soil Conservation Service, Washington, D.C., 1950. 40. Greimann, B. P., Lai, Y. G., and Huang, J., 'Two-Dimensional Total Sediment Load Model Equations.', J. Hydraulic Engineering, 134(8), 1142-1146, 2008. 41. Holly, F. M., Rahuel, J. L., 'New numerical/physical framework for mobile-bed modeling. Part I, Journal of Hydraulic Research. ', Vol. 28, No. 4, 1990. 42. Islam, M. R., 'A REVIEW ON WATERSHED DELINEATION USING GIS TOOLS.', University of Manitoba, Winnipeg,Canada, 2002. 43. Keulegan, G. H., 'Laws of Turbulent Flow in Open Channels.', National Bureau of Standards, Jour. Res. 21:701-741, 1938. 44. Lane, E. W. and Kalinske, A. A., 'Engineering Calculations of Suspended Sediment.', Transactions, American Geophysical Union, Vol. 20, 1941. 45. Lai, Y. G., 'SRH-2D version 2: Theory and User's Manual. Sedimentation and River Hydraulics – Two-Dimensional River Flow Modeling.', Technical Service Center, Bureau of Reclamation, Denver, CO, 2008. 46. Lai, Y. G., 'Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh.', Journal of Hydraulic Engineering, ASCE, 136(1), 12- 23, 2010. 47. Lu, J. Y., Hong, J. H., Su, C. C., Wang, C. Y., and Lai, J. S., 'Field measurements and simulation of bridge scour depth variations during floods.', Journal of Hydraulic Engineering, 134(6), 810-821, 2008. 48. MacDonald, I., Baines, M. J., Nichols, N. K., and Samuels, P. G., 'Analytic Benchmark Solution For Open-Channel Flows.', Journal of Hydrologic Engineering, ASCE, 123(11), 1041-1045, 1997. 49. Fleming, M., 'Description of the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) and Application to Watershed Studies.', ERDC/TN SMART-04-3, 2004. 50. Meyer-Peter, E. and Muller, R., ' Formulas for bed-load transport.', Intern. Assoc. Hydr. Res., 2d Meeting. Stockholm, 1948 . 51. Molinas, A. M. and Yang, C. T. 'Computer program user's manual for GSTARS.', U.S. Department of Interior Bureau of Reclamation Engineering and Research Center, Denver, Colorado, 1986. 52. Orvies, G. J. and Randle, T. J. 'STARS: Sediment transport andriver simulation model.', Technical Guideline, Bureau of Reclamation,U.S. Department of Interior, 1987. 53. Parker, G., 'Surface-based bedload transport relation for gravel rivers.', Journal of Hydraulic Research, 28, 417-436, 1990. 54. Schoklitsch, A., 'The bed load and the suspended Load: Hydropower and water management.', v. 29, no. 4, p. 37-43, 1934. 55. Shih, D. S., Liau, J. M., and Yeh, G. T., 'Model Assessments of Precipitation with a Unified Regional Circulation Rainfall and Hydrological Watershed Model.', Journal of Hydrologic Engineering (ASCE), Vol.17(1), pp.43-54, 2012. 56. Shih, D. S. and Yeh, G. T., 'Using a characteristic-based particle tracking method to solve one-dimensional fully dynamic wave flow.', Comput. Geosci. 22, 439-449, 2018. 57. Strickler, K., 'Contributions to the Question of the Speed Formula and the Roughness Numbers for Streams, Canals, and Closed Lines.', Mitt.16, Federal Office for Water Management, Bern, Switzerland, 1923. 58. USACE, 'Users Manual, Geo-spatial Hydrologic Modeling Extension, HEC - GeoHMS, Version 1.', US Army Core of Engineers, Hydrologic Engineering Center, California, USA, 2000. 59. U.S. Army Corps of Engineers , 'Scour and Deposition in Rivers and Reservoirs.', Hydrologic Engineering Center, 1993. 60. Wilcock, P. R. and Crowe, J. C., 'Surface-based transport model for mixed-size sediment.', Journal of Hydraulic Engineering, 129, 120-128, 2003. 61. Wu, W., Wang, S. S. Y., and Jia, Y., 'Nonuniform sediment transport in alluvial rivers.', J. Hydr. Res., IAHR, 38(6), 427-434, 2000. 62. Wu, W. and Vieira, D. A., 'One-dimensional channel network model CCHE1D 3.0 -- Technical manual.', Technical Report No. NCCHE-TR-2002-1, National Center for Computational Hydroscience and Engineering, 2002. 63. Yeh, G. T., Shih, D. S., and Cheng, J. C., 'An integrated media, integrated processes watershed model.', Comput. Fluids, 45 (1), pp 2-13, 2011.
摘要: 
隨氣候變遷影響,臺灣地區天然災害發生次數增加且災害特性改變,多為複合型災害事件,除須預防洪水災害的產生,亦須防患土砂災害帶來的生命財產損失。本研究為探討土砂運移之情形,以新竹鳳山溪流域為例,建立一巢狀模擬系統,將模擬範圍由集水區尺度,縮小至河川尺度,再縮小至河段尺度。利用降雨逕流模式進行集水區出流量模擬,再配合河道數值模式,將洪水演算之模擬流量及水位結果,提供 SRH-2D 局部二維動床模式之上下游邊界條件,進行河道泥砂傳輸運移模擬。
  本實驗室所開發之CAMP1DF 河道數值模式,可進行動力波、擴散波、運動波三種方法之演算,無論是與解析解 MacDonald (1997) 之比較,亦或是與套裝軟體 (HEC-RAS、SOBEK) 之結果相比,均顯示本模式結果具有可信度,不但可應用於實驗室及現場案例中,也可作為後續動床模式發展之基礎。由本研究所建立之巢狀模擬系統發現,其可提升動床模擬演算效率,及局部二維模擬精細度,可同時兼顧模擬時間及演算精度。敏感度分析部分,配合河床質粒徑分布選用適用之輸砂公式,進行不同重現期洪水之沖淤比較,結果顯示,Wu et al. (2000) 整體沖淤程度較顯著,且隨流量增大,越快達到最大下刷深度,Wilcock-Crowe (2003) 則在較大洪水量時才開始出現下刷行為,且其沖淤情形較穩定,Parker (1990) 則無論是升水段及退水段皆出現先淤積後沖刷的現象。由現場案例分析結果顯示,本研究所建立之巢狀系統邊界流量輸入具有可行性,不但可提高模擬效率,更可提高局部二維模擬精細度,同時改善模擬時間與演算精度。

To be influenced by the climate change, the occurrences of natural hazards are increased in Taiwan and the characteristics of disasters have also been changed. It is known that most of natural hazards are compound disasters. In addition to prevent floods, it also needs to reduce the loss of populations and their properties induced by sedimentations disasters. This study selected the Fengshan creek basin of Taiwan as a study site, to discuss the behavior of sediment transport by established a nested modeling system. The simulation range start from a catchment scale to the river scale, and then to down scale to the local reach. Rainfall runoff model to simulate the surface runoff in the catchment is conducted, and open channel model is then implemented for river routing. Simulation results of discharge and river stage were then treated as boundary conditions for the SRH-2D mobile bed model. This nested modeling system is examined for fluvial sediment transmission simulations.
  The CAMP1DF model (Computational and Applied Hydrology of Numerical Programming Lab for one dimensional river flow, CAMP1DF) that developed by our laboratory, is used to calculate the dynamic wave, diffusion wave and kinematic wave of 1D channel flow in this study. The simulations have identified to be accuracy with compared to the analytical solutions derived by MacDonald et al. (1997). Simulations also revealed the better performance than some software packages (HEC-RAS and SOBEK models). The CAMP1DF model has verified not only in the laboratory but field experiment cases in this study. It can be the basis for follow-up development of mobile bed model of our laboratory. It is also shown that using nested modeling system not only increase the simulation efficiency but improve modeling accuracy of local mobile bed simulation. Concept of nested modeling system can be simultaneous of simulation time and calculation accuracy. The applicable sediment transport formula is selected in accordance with the distribution of local riverbed mass particles. The sensitive analysis has conducted by testing different return periods. The results indicated that the overall behavior of scouring and silting using Wu et al. (2000) formula is more significant. The maximum scour depth is approaching to accompany with increasing flow rate. The simulation using Wilcock-Crowe (2003) formula revealed the it starts to scour as the flash flood occurs. Its erosion and siltation processes are more stable. The Parker (1990) formula indicated both the ascending and dewatering periods of flood are shown the phenomenon of river bed in deposited after washed. The field simulation has verified that proposed nested modeling system is applicable for local mobile bed simulation. It not only can improve the simulation efficiency but accuracy of mobile bed modeling results. The method can simultaneously consider the simulation time and calculation accuracy. The simulation efficiency is not only improved, but also the local fineness grids are constructed. The calculation time and its accuracy have both identified to be ameliorated.
URI: http://hdl.handle.net/11455/97493
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-07起公開。
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105062211-1.pdf4.01 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.