Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97497
標題: 微生物誘導沉澱應用於水泥材料
Microbial induced precipitation applied to cement materials
作者: 黃奕勛
Yi-HSun Huang
關鍵字: 微生物誘導沉澱;綠色能源;碳酸鈣;奈米氧化鋅;Microbial induced precipitation;Application of green energy;Calcium carbonate;Nano zinc oxide
引用: [1] Al-Salloum, Y., Hadi, S., Abbas, H., Almusallam, T. and Moslem, M. (2017). Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation – A review. Construction and Building Materials, 154, pp.857-876. [2] Keiko, S., Tomohiko, Y., Masami, T. (2002). Synthesis of aragonite from calcined scallop shell at ambient temperatures and their morphological characterization by FE-SEM. Shigen-to-Sozai, 118(8), 553-558. [3] F. Hammes, W. Verstraete (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol., 1, pp. 3-7 [4] F. Hammes, N. Boon, G. Clement, J. de Villiers, S.D. Siciliano, W. Verstraete (2003). Molecular, biochemical and ecological characterization of a bio-catalytic calcification reactor. Appl. Microbiol. Biotechnol., 62, pp. 191-201 [5] V. Achal, X. Pan (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotechnol., 173, pp. 307-317 [6] De Muynck, W., De Belie, N. and Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), pp.118-136. [7] B. Perito, G. Mastromei (2011). Molecular basis of bacterial calcium carbonate precipitation. W.E.G. Muller (Ed.), Molecular biomineralization, aquatic organisms forming extraordinary materials, Springer, Berlin, pp. 113-140 [8] B.M. Mortensen, M.J. Haber, J.T. Dejong, L.F. Caslake, D.C. Nelson (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 111 (2), pp. 338-349. [9] G.D.O. Okwadha, J. Li (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81 (9), pp. 1143-1148 [10] M. Nemati, G. Voordouw (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33 (5), pp. 635-642 [11] F.G. Ferris, V. Phoenix, Y. Fujita, R.W. Smith (2004). Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 °C in artificial groundwater. Geochimica et Cosmochimica Acta, 68 (8), pp. 1701-1710 [12] V.S. Whiffin (2004). Microbial CaCO3 precipitation for the production of biocement. PhD Thesis Murdoch University [13] N.W. Soon, L.M. Lee, T.C. Khun, H.S. Ling (2014). Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 140 (5) [14] L. Cheng, R. Cord-Ruwisch, M.A. Shahin (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50 (1), pp. 81-90 [15] J.M. Horn, A. Meike (1995). Microbial activity at Yucca Mountain. Lawrence Livermore National Laboratory [16] W. De Muynck, N. De Belie, W. Verstraete (2010). Microbial carbonate precipitation in construction materials: a review. Ecol. Eng., 36 (2), pp. 118-136 [17] S. Ghosh, M. Biswas, B.D. Chattopadhyay, S. Mandal (2009). Microbial activity on the microstructure of bacteria modified mortar. Cement Concrete Comp., 31 (2), pp. 93-98 [18] S. Stocks-Fischer, J.K. Galinat, S.S. Bang (1999). Microbiological precipitation of CaCO3. Soil Biol. Biochem., 31 (11), pp. 1563-1571 [19] W. De Muynck, D. Debrouwer, N. De Belie, W. Verstraete (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concr. Res., 38 (7), pp. 1005-1014 [20] S.K. Ramachandran, V. Ramakrishnan, S.S. Bang (2001). Remediation of concrete using micro-organisms. ACI Mater. J., 98 (1), pp. 3-9 [21] R. Siddique, N.K. Chahal (2011). Effect of ureolytic bacteria on concrete properties. Constr. Build. Mater., 25 (10), pp. 3791-3801 [22] K. Van Tittelboom, N. De Belie, W. De Muynck, W. Verstraete (2010). Use of bacteria to repair cracks in concrete. Cement Concrete Res., 40 (1), pp. 157-166 [23] K.L. Bachmeier, A.E. Williams, J.R. Warmington, S.S. Bang (2002). Urease activity in microbiologically-induced calcite precipitation. J. Biotechnol., 93 (2), pp. 171-181 [24] V. Achal, A. Mukherjee, P.C. Basu, M.S. Reddy (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biot., 36 (7), pp. 981-988 [25] N. Chahal, R. Siddique, A. Rajor (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater., 28 (1), pp. 351-356 [26] W. De Muynck, K. Cox, N. De Belle, W. Verstraete (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater., 22 (5), pp. 875-885 [27] N. Chahal, R. Siddique, A. Rajor (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater., 37, pp. 645-651 [28] V. Achal, A. Mukerjee, M.S. Reddy (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater., 48, pp. 1-5 [29] H.K. Kim, S.J. Park, J.I. Han, H.K. Lee (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr. Build. Mater., 38, pp. 1073-1082 [30] J.Y. Wang, N. De Belie, W. Verstraete (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biot., 39 (4), pp. 567-577 [31] J.Y. Wang, K. Van Tittelboom, N. De Belie, W. Verstraete (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. [32] Constr. Build. Mater., 26 (1), pp. 532-540 [33] J.Y. Wang, D. Snoeck, S. Van Vlierberghe, W. Verstraete, N. De Belie (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr. Build. Mater., 68, pp. 110-119 [34] J.Y. Wang, H. Soens, W. Verstraete, N. De Belie (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement Concrete Res., 56, pp. 139-152 [35] J.Y. Wang, J. Dewanckele, V. Cnudde, S. Van Vlierberghe, W. Verstraete, N. De Belie (2014). X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement Concrete Comp., 53, pp. 289-304 [36] V. Wiktor, H.M. Jonkers (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr. Comp., 33 (7), pp. 763-770 [37] J. Xu, W. Yao (2014). Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cement Concrete Res., 64, pp. 1-10 [38] J. Xu, W. Yao, Z. Jiang (2014). Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J. Mater. Civ. Eng., 26 (5), pp. 983-991 [39] W. De Muynck, K. Verbeken, N. De Belie, W. Verstraete (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol. Eng., 36 (2), pp. 99-111 [40] C.M. Gorospe, S.H. Han, S.G. Kim, J.Y. Park, C.H. Kang, J.H. So JS Jeong (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol. Bioprocess Eng., 18, pp. 903-908 [41] V. Achal, X. Pan (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol., 62 (3), pp. 894-902 [42] V. Achal, X. Pan (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotechnol., 173 (1), pp. 307-317 [43] P. Anbu, C.H. Kang, Y.J. Shin, J.S. So (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 1, p. 5 [44] C.X. Qian, L.F. Ren, B. Xue, T.J. Cao (2016). Bio-mineralization on cement-based materials consuming CO2 from atmosphere. Constr Build Mater., 106, pp. 126-132 [45] G. Kaur, N.K. Dhami, S. Goyal, A. Mukherjee, M.S. Reddy (2016). Utilization of carbon dioxide as an alternative to urea in biocementation. Constr. Build. Mater., 123, pp. 527-533 [46] T.A. Mc Connaughey, H.A. Water, Small, A.M. Smallx (2000). Community and environmental influences on reef coral calcification. Limnol. Oceanogr., 45, pp. 1667-1671 [47] M. Dittrich, M. Obst (2004). Are Picoplankton responsible for calcite precipitation in lakes. Ambio, 33, pp. 559-564 [48] R.B. Frankel, D.A. Bazylinski (2003). Biologically induced mineralization by bacteria. Rev. Mineral. Geochem., 54, pp. 95-114 [49] S. Castanier, G.L.M. Levrel, J.P. Perthuisot (1999). Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment. Geol., 126, pp. 9-23 [50] R.C. Atlas, P.D. Rude (1998). Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediment. Geochim. Cosmochim. Acta, 52, pp. 751-766 [51] T. Sakaguchi, A. Arakaki, T. Matsunaga (2002). Ibrio magneticus sp nov., a novel sulfate reducing bacterium that produces intracellular single domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol., 52, pp. 215-221 [52] J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson (2010). Bio-mediated soil improvement. Ecological Engineering, 36 (2), pp. 197-210 [53] R.A. Burne, Y.Y.M. Chen (2000). Bacterial ureases in infectious diseases. [54] Microbes and Infection, 2 (5), pp. 533-542 [55] S. Castanier, G. Le Métayer-Levrel, J.P. Perthuisot (1999). Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. [56] Sedimentary Geology, 126 (1–4), pp. 9-23 [57] K.S. Smith, J.G. Ferry (2000). Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev., 24, pp. 335-366 [58] V. Achal, X. Pan (2011). Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol., 62, pp. 894-902 [59] I.S. Park, R.P. Hausinger (1995). Requirement of carbon dioxide for in vitro assembly of urease nickel metallocenter. Science, 267, pp. 1156-1158 [60] W. Li, L.P. Liu, W.S. Chen, L.J. Yu, W.B. Li, H.Z. Yu (2010). Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochem., 45, pp. 1017-1021 [61] M. Luo, C. Qian (2016). Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr. Build. Mater., 121, pp. 659-663 [62] Y. Zhang, H.X. Guo, X.H. Cheng, C.À. Caco, C.À. Ca (2015). Role of calcium sources in the strength and microstructure of microbial mortar. [63] Constr. Build. Mater., 77, pp. 160-167 [64] K. Santhosh, V.R. Ramachandra, et al. (2001). Remediation of concrete using micro-organisms. ACI Mater. J. [65] R. Andalib, M.Z. Abd Majid, Hussin (2016). Optimum concentration of Bacillus megaterium for strengthening structural concrete. Constr. Build. Mater., 118, pp. 180-193 [66] N. Chahal, R. Siddique, A. Rajor (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater., 28, pp. 351-356 [67] N. Chahal, R. Siddique, A. Rajor (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr. Build. Mater., 37 (1), pp. 645-651 [68] F. Nosouhian, D. Mostofinejad, H. Hasheminejad (2016). Concrete durability improvement in a sulfate environment using bacteria, 28(1) 1–12. [69] V. Achal, X. Pan, N. Özyurt (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol. Eng., 37 (4), pp. 554-559 [70] W. Khaliq, M.B. Ehsan (2016). Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater., 102, pp. 349-357 [71] V. Achal, A. Mukherjee, M.S. Reddy (2011). Microbial Concrete : Way to Enhance the Durability of Building Structures, 23, 730–734. [72] M.S. Reddy (2009). Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii, pp. 433–438. [73] Q. Tri, N. Maes, G. De Schutter, D. Jacques, G. Ye (2013). Determination of water permeability of cementitious materials using a controlled constant flow method. Constr. Build. Mater., 47, pp. 1488-1496 [74] R. Siddique, K. Singh, M. Kunal, V. Corinaldesi Singh, A. Rajor (2016). Properties of bacterial rice husk ash concrete. Constr. Build. Mater., 121, pp. 112-119 [75] R. Siddique, V. Nanda, Kunal (2016). Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr. Build. Mater., 106, pp. 461-469 [76] J. Qiu, D. Qin, S. Tng, E. Yang (2014). Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr. Build. Mater., 57, pp. 144-150 [77] A.M. Grabiec, J. Klama, D. Zawal, D. Krupa (2012). Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr. Build. Mater., 34, pp. 145-150 [78] V. Achal, A. Mukerjee, M.S. Reddy (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater., 48, pp. 1-5 [79] R. Siddique, N. Kaur (2011). Effect of ureolytic bacteria on concrete properties. Constr. Build. Mater., 25 (10), pp. 3791-3801 [80] P. Ghosh, S. Mandal, B.D. Chattopadhyay, S. Pal (2005). Use of microorganism to improve the strength of cement mortar, 35, 1980–1983. [81] Abo-El-Enein, S.A., Ali, A.H., Talkhan, F.N., Abdel-Gawwad, H.A. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8, 185–192. [82] Anbu P., Kang C.H., Shin Y.J. So J.S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(250): 1-26. [83] Cheng, L., Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering. 42, 64–72. [84] Dagnall, S., Jon, H.L., David, P. (2002). Resource mapping and analysis of farm livestock manures - assessing the opportunities for biomass-to-energy schemes. Bioresource Technology, 71, 225-234. [85] DeJong J.T., Mortensen B.M., Martinez B.C., Nelson D.C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36, 197–210. [86] European Commission Directive 2003/30/EC (2003). European Parliament and of the Council of 8 May 2003 on the Promotion of the Use of Biofuels or Other Renewable Fuels for Transport. [87] Hammes F, Verstraete W. (2002). Key roles of ph and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Bio/Technol 1:3–7. [88] Hariharan, M., Varghese, N., Cherian, A.B., Sreenivasan P.V., Paul J., Asmy Antony, K.A. (2014). Synthesis and Characterisation of CaCO3 (Calcite) Nano Particles from Cockle Shells Using Chitosan as Precursor. International Journal of Scientific and Research Publications, 4(10), 1-5. [89] Harkes, M.P., van Paassen, L.A., Booster J.L., Whiffin, V.S., van Loosdrecht, M.C.M. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36, 112–117. [90] Holm-Nielsen, J. B., Al Seadi, T., Oleskowicz-Popiel, P. (2009). The Future of anaerobic digestion and biogas utilization. Bioresource Technology 100, 5478-5484. [91] Hsu C.M., Huang Y.H, Chen H.J., Lee W.C., Chiu H.W., Maity J.P., Chen C.C., Kuo Y.H., Chen C.Y. (2018). Green synthesis of nano-Co3O4 by Microbial Induced Precipitation (MIP) process using Sporosarcina pasteurii and its application as supercapacitor. Materials Today Communications 14 (2018), 302–311. [92] Keiko, S., Tomohiko, Y., Masami, T. (2002). Synthesis of aragonite from calcined scallop shell at ambient temperatures and their morphological characterization by FE-SEM.Shigen-to-Sozai, 118(8), 553-558. [93] Kenpitts apes. (2007). Porosity and Permeability Lab. http://kenpitts.net/apes/earth_systems/2007/porosity_permeability_lab.htm (accessed 05/06/2017). [94] Krajewska B. (2017). Urease-aided calcium carbonate mineralization for engineering applications: A review. J Adv Res (2017), https://doi.org/10.1016/j.jare.2017.10.009 [95] Le Me´tayer-Levrel, G., Castanier, S., Orial,G., Loubie`re, J.-F., Perthuisot J.-P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126, 25–34. [96] Lopez-Garcia, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot Moreira, F. (2005). Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van. Turkey Extremophiles, 9, 263–274. [97] Ma, J.A. (2006). Web-based Spatial Decision Support System for Utilizing Organic Wastes as Renewable Energy Resources in New York State. Ph.D. dissertation. USA: Cornell University. [98] Mujah D., Shahin M.A., Cheng L. (2017). State-of-the-Art Review of biocementation by Microbially Induced Calcite Precipitation (MICP) for soil stabilization Geomicrobiology Journal, 34(6): 524-537. [99] Muynck, W.D., Verbeken, K., Belie, N.D., Verstraete, W. (2010). Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering 36(2), 99-111. [100] Nemati, M., Voordouw, G. (2003). Modification of porous media permeability, using calcium carbonate produced enzymatically in situ Enzyme and Microbial Technology, 33, 635–642. [101] Okwadha, G.D.O., Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81, 1143–1148. [102] Rong, H., Qian, C.X., Li, L.Z. (2012)a. Influence of molding process on mechanical properties of sandstone cemented by microbe cement. Construction and Building Materials, 28, 238–243. [103] Rong, H., Qian, C.X., Li, L.Z. (2012)b. Study on microstructure and properties of sandstone cemented by microbe cement. Construction and Building Materials 36, 687–694. [104] Rowshanbakht, K., Khamehchiyan, M., Sajedi, R.H., Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density oncarbonate precipitation resulting from microbial treatment. Ecological Engineering, 89 (2016) 49–55. [105] Schwantes-Cezario, N., Medeiros, L. P., De Oliveira Jr, A. G., Nakazato, G., Kobayashi, R. K. T., & Toralles, B. M. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. International Biodeterioration & Biodegradation, 123, 200-205. [106] Shirakawa,M.A., Kaminishikawahara,K.K., John,V.M., Kahn,H., Futai,M.M. (2011). Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 65, 1730–1733. [107] Stocks-Fischer,S., Galinat,J.K., Bang,S.S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31, 1563–1571. [108] Weiner S., Dove, P.M. (2003). An Overview of Biomineralization Processes and the Problem of the Vital Effect. Reviews in Mineralogy and Geochemistry, 54 (1), 1-29. [109] Whiffin V.S. (2004). Microbial CaCO3 precipitation for the production of biocement. PhD Thesis, Murdoch University, Perth, WA, p162. [110] Whiffin, V.S., van Paassen, L.A., Harkes, M.P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24 (5), 417–423. [111] Edvardsen C. (1999). Water Permeability and Autogenous Healing of Cracks in Concrete. ACI Materials Journal, 96(4). [112] Hearn, N. (1998). Self-sealing, autogenous healing and continued hydration: What is the difference? Materials and Structures, 31(8), pp.563-567. [113] Chahal, N. and Siddique, R. (2013). Permeation properties of concrete made with fly ash and silica fume: Influence of ureolytic bacteria. Construction and Building Materials, 49, pp.161-174. [114] Sierra-Beltran, M., Jonkers, H. and Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Construction and Building Materials, 67, pp.344-352. [115] Pacheco-Torgal, F. and Labrincha, J. (2013). Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability. Construction and Building Materials, 40, pp.1136-1141. [116] Wiktor, V. and Jonkers, H. (2015). Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Studies in Construction Materials, 2, pp.11-17. [117] De Muynck, W., De Belie, N. and Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), pp.118-136. [118] Jonkers, H., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), pp.230-235. [119] Remediation of Concrete Using Microorganisms. (2001). ACI Materials Journal, 98(1). [120] H. Knorre, K.E. Krumbein (2000). Bacterial calcification. E.E. Riding, S.M. Awramik (Eds.), Microbial Sediments, Springer–Verlag, Berlin, 25-31. [121] Rivadeneyra, M., Párraga, J., Delgado, R., Ramos-Cormenzana, A. and Delgado, G. (2004). Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiology Ecology, 48(1), pp.39-46. [122] Bang, S., Galinat, J. and Ramakrishnan, V. (2001). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4-5), pp.404-409. [123] Bachmeier, K., Williams, A., Warmington, J. and Bang, S. (2002). Urease activity in microbiologically-induced calcite precipitation. Journal of Biotechnology, 93(2), pp.171-181. [124] Garcia-Garcia, G., Woolley, E. and Rahimifard, S. (2017). Optimising Industrial Food Waste Management. Procedia Manufacturing, 8, pp.432-439. [125] Sivaperumal, P., Kamala, K., Rajaram, R. (2017). Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms. Advances in Food and Nutrition Research, 80, 165-179. [126] Siddique, R. and Chahal, N. (2011). Effect of ureolytic bacteria on concrete properties. Construction and Building Materials, 25(10), pp.3791-3801. [127] Perito B., and Mastromei G, (2003). Conservation of monumental stones by bacterial biomineralization. Microbiology Today, 30, 113–114. [128] Standard test method for Density, Absorption and voids in Hardened concrete. In: Annual book of ASTM standards ASTM C642, vol. 4(2); 1997. [129] Chahal, N., Siddique, R. and Rajor, A. (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Construction and Building Materials, 37, pp.645-651. [130] Dhami, N., Reddy, M. and Mukherjee, A. (2012). Improvement in strength properties of ash bricks by bacterial calcite. Ecological Engineering, 39, pp.31-35. [131] Kim, H., Park, S., Han, J. and Lee, H. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38, pp.1073-1082. [132] Al-Salloum, Y., Hadi, S., Abbas, H., Almusallam, T. and Moslem, M. (2017). Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation – A review. Construction and Building Materials, 154, pp.857-876. [133] Belie, N., Wang, J., Bundur, Z. and Paine, K. (2018). Bacteria based concrete. [online] Researchportal.bath.ac.uk. Available at: https://researchportal.bath.ac.uk/en/publications/bacteria-based-concrete [Accessed 21 Aug. 2018]. [134] Vijay, K., Murmu, M. and Deo, S. (2017). Bacteria based self healing concrete – A review. Construction and Building Materials, 152, pp.1008-1014. [135] Rong, H. and Qian, C. (2012). Characterization of microbe cementitious materials. Chinese Science Bulletin, 57(11), pp.1333-1338. [136] Achal, V. and Mukherjee, A. (2015). A review of microbial precipitation for sustainable construction. Construction and Building Materials, 93, pp.1224-1235. [137] Rong, H., Qian, C. and Li, L. (2012). Study on microstructure and properties of sandstone cemented by microbe cement. Construction and Building Materials, 36, pp.687-694. [138] Achal, V., Mukherjee, A., Basu, P. and Reddy, M. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(7), pp.981-988. [139] Achal, V., Mukherjee, A. and Reddy, M. (2010). Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology & Biotechnology, 38(9), pp.1229-1234. [140] Bernardi, D., DeJong, J., Montoya, B. and Martinez, B. (2014). Bio-bricks: Biologically cemented sandstone bricks. Construction and Building Materials, 55, pp.462-469. [141] Sobolev, K. and Ferrada Gutiérrez, M. (2014). How Nanotechnology Can Change the Concrete World. Progress in Nanotechnology, pp.113-116. [142] Nazari A., Riahi S., Shamekhi S.F., Khademno A, (2010). Mechanical properties of cement mortar with Al2O3 nanoparticles. J. Am. Sci. 6, 94–97. [143] Arefi, M. and Rezaei-Zarchi, S. (2012). Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites. International Journal of Molecular Sciences, 13(4), pp.4340-4350. [144] G.L. Guerrini, F. Corazza. (2008). White cement and photocatalysis part 1: fundamentals. First Arab International Conference and Exhibition on The Uses of White Cement Cairo, Egypt, 28-30. [145] Nazari, A. and Riahi, S. (2011). The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder. Materials Research, 14(3), pp.299-306. [146] Senff, L., Tobaldi, D., Lemes-Rachadel, P., Labrincha, J. and Hotza, D. (2014). The influence of TiO2 and ZnO powder mixtures on photocatalytic activity and rheological behavior of cement pastes. Construction and Building Materials, 65, pp.191-200. [147] Loh, K., Gaylarde, C. and Shirakawa, M. (2018). Photocatalytic activity of ZnO and TiO 2 'nanoparticles' for use in cement mixes. Construction and Building Materials, 167, pp.853-859. [148] Singh, V., Sandeep, K., Kushwaha, H., Powar, S. and Vaish, R. (2018). Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Construction and Building Materials, 158, pp.285-294. [149] Noeiaghaei, T., Dhami, N. and Mukherjee, A. (2017). Nanoparticles surface treatment on cemented materials for inhibition of bacterial growth. Construction and Building Materials, 150, pp.880-891. [150] Liu, B. and Zeng, H. (2003). Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. Journal of the American Chemical Society, 125(15), pp.4430-4431. [151] Maryanti, E., Damayanti, D., Gustian, I. and Yudha S, S. (2014). Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak DC. Materials Letters, 118, pp.96-98. [152] Behfarnia, K., Keivan, A. and Keivan, A. (2013). The effects of TiO2 and ZnO nanoparticles on physical and mechanical properties of normal concrete. Asian Journal of Civil Engineering, 14, 517-531. [153] Abo-El-Enein, S., El-Hosiny, F., El-Gamal, S., Amin, M. and Ramadan, M. (2018). Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles. Construction and Building Materials, 173, pp.687-706. [154] Jonkers, H., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), pp.230-235. [155] Wang, J., Van Tittelboom, K., De Belie, N. and Verstraete, W. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 26(1), pp.532-540. [156] Wang, J., Snoeck, D., Van Vlierberghe, S., Verstraete, W. and De Belie, N. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, pp.110-119. [157] Sierra-Beltran, M., Jonkers, H. and Schlangen, E. (2014). Characterization of sustainable bio-based mortar for concrete repair. Construction and Building Materials, 67, pp.344-352. [158] Tripathi, R., Bhadwal, A., Gupta, R., Singh, P., Shrivastav, A. and Shrivastav, B. (2014). ZnO nanoflowers: Novel biogenic synthesis and enhanced photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 141, pp.288-295.
摘要: 
本文主要目的為運用微生物誘導沉澱之(Microbial Induced Precipitation)技術於水泥材料之改良,進行砂柱試驗、水泥漿、水泥砂漿之產製研究。並結合綠能,評估其運應在土木水利工程可行性之探討。
首先探討微生物誘導沉澱技術之內涵,其核心技術原理之推演,經評估後,選擇三項與水泥材料相關之實驗。分別為:微生物誘導的碳酸鈣沉澱(MICP)使用豬尿液作為工業尿素的替代物、微生物誘導碳酸鈣沉澱使用有機廢液代替細菌和水泥砂漿的應用和利用微生物誘導沉澱製作含有奈米氧化鋅之白水泥漿。
在微生物誘導的碳酸鈣沉澱(Microbial Induced Calcium Carbonate Precipitation)使用豬尿液做為工業尿素替代物的砂柱試驗中,結果顯示,溶液澆灌間隔時間越短,機械性能提升越高,石英砂柱的力學性能(抗滲透性)在時間間隔為四小時,與對照相比,由於CaCO3之形成提升了43%。在微生物誘導碳酸鈣沉澱使用有機廢液代替細菌和水泥砂漿應用之試驗中,結果表明,經過微生物誘導碳酸鈣沉澱工法的處理後,水泥砂漿吸水率下降,最高可達10%。並提高了水泥砂漿的抗壓強度。而利用微生物誘導沉澱製作含有奈米氧化鋅之白水泥漿試驗中,發現透過微生物誘導沉澱工法的處理後,提高了水泥砂漿的抗壓強度,其中以添加5%硝酸鋅之試體強度最高,強度約可提升20%。

The main purpose of present research is to use the Microbial Induced Precipitation (MIP) technology to improve the cement material, and to study the production of CaCO3 by sand column experiment, cement paste and cement mortar that can be use in civil engineering sector as the application of green energy.
In present study, three experiments related to cement materials are selected and considered after discussion about microbial induced precipitation technology, core technical principle and evaluation. The present research work are focused on, (i) microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea, (ii) microbial induced calcium carbonate precipitation using industrial waste water as a substitution to bacteria and cement mortar application, and (iii) preparation of white cement paste containing nano zinc oxide by microbial induced precipitation.
The findings of sand column experimental study of MICP, using pig urine as an alternative to industrial urea shows that the mechanical properties (anti-permeability) of the quartz-sand columns were noticed better, while time interval was shorter as 4 h in between the application of pig urine and bacterial solution (CaCO3 formation increase by 43%, compare to control). The research findings of MICP, using industrial waste water as a substitution to bacteria and cement mortar application exhibited that the water absorption rate of cement mortar was decreased up to 10%, where the compressive strength of cement mortar was noticed improved after MICP treatment. Lastly, the preparation of white cement paste, containing nano zinc oxide by MIP shows that the compressive strength of the cement mortar was improved after MIP process, where the strength of the sample was noticed as higher as 13% compare to control, in presence of 2% zinc nitrate.
URI: http://hdl.handle.net/11455/97497
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-29起公開。
Appears in Collections:土木工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8102062005-1.pdf4.61 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.