Please use this identifier to cite or link to this item:
標題: 臺南九號花生根瘤菌之分離及特性研究
Isolation and characterization of rhizobia associated with peanut (Arachis hypogaea L.'Tainan selection NO.9')
作者: 柯紀萱
Chi-Hsuan Ko
關鍵字: 花生;豆科;根瘤菌;生物肥料;促進植物生長特性;peanut;legume;rhizobia;biofertilizer;plant growth promoting characteristic
引用: 黃山內。1999。技術專刊98期:落花生專輯。行政院農業委員會台南區農業改良場。台南。 陳國憲、林晉卿。2009。技術專刊146期:落花生合理化施肥技術。行政院農業委員會台南區農業改良場。台南。 羅秋雄。2005。作物施肥手冊。行政院農業委員會農糧署。台北。 農糧署。2012。肥料檢驗項目之檢驗方法。行政院農業委員會農糧署。台北 楊秋忠。2001。豆科綠肥作物的固氮及接種根瘤菌的方法。行政院農業委員會農業試驗所。台中。 黃郁瑄。2014。兼性少樣分營細菌之分離、營養及植物生長特性研究。國立中興大學土壤環境科學系碩士論文。台中。 彭聖宸。2017。番茄葉圈與葉內細菌之分離及特性研究。國立中興大學土壤環境科學系碩士論文。台中。 Anandham, R., R. Sridar, P. Nalayini, S. Poonguzhali, M. Madhaiyan and T. Sa. 2007. Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol. Res. 162: 139-153. doi:10.1016/j.micres.2006.02.005. Anzuay, M.S., O. Frola, J.G. Angelini, L.M. Luduena, A. Fabra and T. Taurian. 2013. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis. 60: 143-154. doi:10.1007/s13199-013-0250-2. Badawi, F.S.F., A.M.M. Biomy and A.H. Desoky. 2011. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agr. Sci. 56: 17-25. doi: Bai, Y., F. D'Aoust, D.L. Smith and B.T. Driscoll. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238. doi:10.1139/w02-014. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. BiotechnologyAdvances 16: 729-770. doi: Bogino, P., E. Banchio, C. Bonfiglio and W. Giordano. 2008. Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56: 66-72. doi:10.1007/s00284-007-9041-4. Brom, S., L. Girard, C. Tun-Garrido, A. Garcia-de los Santos, P. Bustos, V. Gonzalez, et al. 2004. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 186: 7538-7548. doi:10.1128/JB.186.22.7538-7548.2004. Carro, L., C. Sproer, P. Alonso and M.E. Trujillo. 2012. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35: 73-80. doi:10.1016/j.syapm.2011.11.003. Castro, S., M. Permigiani, M. Vinocur and A. Fabra. 1999. Nodulation in peanut (Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Appl. Soil Ecol. 13: 39-44. doi: Chang, Y.L., J.Y. Wang, E.T. Wang, H.C. Liu, X.H. Sui and W.X. Chen. 2011. Bradyrhizobium lablabi sp nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int. J. Syst. Evol. Microbiol. 61: 2496-2502. doi:10.1099/ijs.0.027110-0. Chen, J., M. Hu, H. Ma, Y. Wang, E.T. Wang, Z. Zhou, et al. 2016. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst Appl Microbiol 39: 418-427. doi:10.1016/j.syapm.2016.06.002. Chen, Y.P., P.D. Rekha, A.B. Arun, F.T. Shen, W.A. Lai and C.C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41. doi: Denton, M.D., L.A. Phillips, M.B. Peoples, D.J. Pearce, A.D. Swan, P.M. Mele, et al. 2017. Legume inoculant application methods: effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil 419: 25-39.doi:10.1007/s11104-017-3317-7. Dey, R., K.K. Pal, D.M. Bhatt and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159: 371-394. doi:10.1016/j.micres.2004.08.004. Dowling, D.N. 1986 Competition for nodulation of legumes. Annu. Rev. Microbiol. 40: 131-157. doi: 10.1146/annurev.mi.40.100186.001023. El-Akhal, M.R., A. Rincon, F. Arenal, M.M. Lucas, N. El Mourabit, S. Barrijal, et al. 2008. Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol. Biochem. 40: 2911-2914. doi:10.1016/j.soilbio.2008.08.005. El-Akhal, M.R., A. Rincon, T.C. de la Pena, M.M. Lucas, N. El Mourabit, S. Barrijal, et al. 2013. Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol. 15: 415-421. doi:10.1111/j.1438-8677.2012.00634.x. Fischer, H.M. 1994. Genetic regulationofnitrogen fixationinrhizobia.Microbiol.Rev. 58: 352-386. Gronemeyer, J.L., P. Chimwamurombe and B. Reinhold-Hurek. 2015. Bradyrhizobium subterraneum sp nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int. J. Syst. Evol. Microbiol. 65: 3241-3247. doi:10.1099/ijsem.0.000403. Gronemeyer, J.L., T. Hurek, W. Bunger and B. Reinhold-Hurek. 2016. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int. J. Syst. Evol.Microbiol. 66: 62-69. doi:10.1099/ijsem.0.000674. Guimaraes, A.A., L.A. Fiorentino, K.A. Almeida, L. Lebbe, K.B. Silva, A. Willems, et al. 2015. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst. Appl. Microbiol. 38: 433-441. doi:10.1016/j.syapm.2015.06.006. Huang, Y.L., Z.Y. Kuang, Z.J. Deng, R. Zhang and L.X. Cao. 2017. Endophytic bacterial and fungal communities transmitted from cotyledons and germs in peanut (Arachis hypogaea L.) sprouts. Environ. Sci. Pollut. Res. 24: 16458-16464. doi:10.1007/s11356-017-9254-4. Hungria, M., L.H. Boddey, M.A. Santos and M.A.T. Vargas. 1998. Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B-elkanii strains. Biol. Fertil. Soils 27: 393-399. doi:10.1007/s003740050449. Ibanez, F., J. Angelini, T. Taurian, M.L. Tonelli and A. Fabra. 2009. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst. Appl. Microbiol. 32: 49-55. doi:10.1016/j.syapm.2008.10.001. Ji, Z.J., H. Yan, Q.G. Cui, E.T. Wang, W.F. Chen and W.X. Chen. 2017. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst. Appl. Microbiol. 40: 114-119. doi:10.1016/j.syapm.2016.12.003. Lambrecht, M., Y. Okon, A. Vande Broek and J. Vanderleyden. 2000. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8: 298-300. doi:10.1016/s0966-842x(00)01732-7. Liu, Y., X. Jiang, D. Guan, W. Zhou, M. Ma, B. Zhao, et al. 2017. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci. Rep. 7: 10946. doi:10.1038/s41598-017-11372-0. Lu, J., F. Yang, S. Wang, H. Ma, J. Liang and Y. Chen. 2017. Co-existence of Rhizobia and Diverse Non-rhizobial Bacteria in the Rhizosphere and Nodules of Dalbergia odorifera Seedlings Inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium-Like and Burkholderia pyrrocinia-Like Strains. Front.Microbiol.8: 2255. doi:10.3389/fmicb.2017.02255. Mathesius, U., H.R.M. Schlaman, H.P. Spaink, C. Sautter, B.G. Rolfe and M.A. Djordjevic. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23-34. doi:10.1046/j.1365-313X.1998.00090.x. Mehta, S. and C.S. Nautiyal. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr.Microbiol. 43: 51-56. doi:10.1007/s002840010259. Morgante, C., J. Angelini, S. Castro and A. Fabra. 2005. Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut. Soil Bio.Biochem. 37: 1436-1444. doi:10.1016/j.soilbio.2004.12.014. Morgante, C., S. Castro and A. Fabra. 2007. Role of rhizobial EPS in the evasion of peanut defense response during the crack-entry infection process. Soil Bio.Biochem. 39: 1222-1225. doi:10.1016/j.soilbio.2006.11.022. Moulin, L., A. Munive, B. Dreyfus and C. Boivin-Masson. 2001. Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411: 948. doi:10.1038/35082070. Muñoz, V., F. Ibañez, M.L. Tonelli, L. Valetti, M.S. Anzuay and A. Fabra. 2011. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst. Appl. Microbiol. 34: 446-452. doi: Nievas, F., P. Bogino, F. Sorroche and W. Giordano. 2012. Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors (Basel) 12: 2851-2873. doi:10.3390/s120302851. Oldroyd, G.E.D. and J.M. Downie. 2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59: 519-546. doi:10.1146/annurev.arplant.59.032607.092839. Oldroyd, G.E.D., J.D. Murray, P.S. Poole and J.A. Downie. 2011. The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annu. Rev. Genet. 45: 119-144. Osei, O., R.C. Abaido, B.D.K. Ahiabor, R.M. Boddey and L.F.M. Rouws. 2018. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. Appl. Soil Ecol. 127: 41-50. doi:10.1016/j.apsoil.2018.03.003. Palaniappan, P., P.S. Chauhan, V.S. Saravanan, R. Anandham and T. Sa. 2010. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils 46: 807-816. doi:10.1007/s00374-010-0485-5. Peix, A., A.A. Rivas-Boyero, P.F. Mateos, C. Rodriguez-Barrueco, E. Martı́nez-Molina and E. Velazquez. 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol.Biochem. 33: 103-110. doi:– Prakamhang, J., P. Tittabutr, N. Boonkerd, K. Teamtisong, T. Uchiumi, M. Abe, et al. 2015. Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl. Soil Ecol. 85: 38-49. doi:10.1016/j.apsoil.2014.08.009. Prinsen, E., N. Chauvaux, J. Schmidt, M. John, U. Wieneke, J. Degreef, et al. 1991. Stimulationofindole-3-acetic-acidproductioninrhizobiumbyflavonoids.FEBS Lett. 282: 53-55. doi:10.1016/0014-5793(91)80442-6. Ravanbakhsh, M., R. Sasidharan, L.A.C.J. Voesenek, G.A. Kowalchuk, A. Jousset and D. Cameron. 2017. ACC deaminase-producing rhizosphere bacteria modulate plant responses to flooding. J.Ecol. 105: 979-986. doi:10.1111/1365-2745.12721. Reed, S.C., C.C. Cleveland and A.R. Townsend. 2011. Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective. Annu. Rev. Ecol. Evol. Syst. 42: 489-512. Sobolev, V.S., V.A. Orner and R.S. Arias. 2013. Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions. Plant Soil 371: 367-376. doi:10.1007/s11104-013-1692-2. Spaepen, S., J. Vanderleyden and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol.Rev. 31: 425-448. doi:10.1111/j.1574-6976.2007.00072.x. Stajkovic, O., D. Delic, D. Josic, D. Kuzmanovic, N. Rasulic and J. Knezevic-Vukcevic. 2011. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom. Biotech.Lett. 16: 5919-5926. Tan. 2014. Isolation and Characterization of Rhizobia and Plant Growth-Promoting Rhizobacteria and Their Effects on Growth of Rice Seedlings. Am. J. Agr. Bio. Sci. 9: 342-360. doi:10.3844/ajabssp.2014.342.360. Taurian, T., F. Ibañez, A. Fabra and O.M. Aguilar. 2006. Genetic Diversity of Rhizobia Nodulating Arachis hypogaea L. in Central Argentinean Soils. Plant Soil 282: 41-52.doi:10.1007/s11104-005-5314-5. Thies, J.E., B. Benbohlool and P.W. Singleton. 1992. Environmental effectsoncompetitionfornoduleoccupancybetweenintroducedandindigenousrhizobiaandamongintroducedstrains. Can. J. Microbiol. 38: 493-500. doi:10.1139/m92-081. Vessey, J.K. 2003.Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. doi:10.1023/a:1026037216893. Vicario, J.C., M.S. Dardanelli and W. Giordano. 2015. Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiol.Lett.362: 6. doi:10.1093/femsle/fnu038. Vicario, J.C., E.D. Primo, M.S. Dardanelli and W. Giordano. 2016. Promotion of Peanut Growth by Co-inoculation with Selected Strains of Bradyrhizobium and Azospirillum. J. Plant Growth Regul. 35: 413-419. doi:10.1007/s00344-015-9547-0. Vlassak, K.M. and J. Vanderleyden. 1997. Factors influencing nodule occupancy by inoculant rhizobia. Crit. Rev. Plant Sci. 16: 163-229. doi:10.1080/713608146. Walitang, D.I., K. Kim, M. Madhaiyan, Y.K. Kim, Y. Kang and T. Sa. 2017. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol.17: 209.doi:10.1186/s12866-017-1117-0. Wani, P.A., M.S. Khan and A. Zaidi. 2007. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70: 36-45. doi:10.1016/j.chemosphere.2007.07.028. Woodward, A.W. and B. Bartel. 2005. Auxin: Regulation, action, and interaction. Ann. Bot. 95: 707-735. doi:10.1093/aob/mci083.
花生(Arachis hypogaea L.)在豆科作物當中不僅是屬於具經濟價值作物,也是屬於農業上很重要的糧食作物,而豆科作物也因為能與根瘤菌共生結瘤進行生物固氮作用,將空氣中的氮氣透過存在於根瘤當中的一連串機制來轉換為植物可以利用的形式,因此更屬於值得研究與探討的作物之一,也希冀能夠從根瘤當中分離得到具有促進植物生長之根瘤菌,並在未來能夠開發做為生物肥料使用。本研究利用酵母萃取物甘露醇培養基對臺南九號花生根瘤內存在之細菌進行菌株的篩選,經過16S rDNA親源分析結果發現臺南九號花生根瘤內除了有快生型根瘤菌(Rhizobium)以及慢生型根瘤菌(Bradyrhizobium)的存在之外,亦分離出了包含芽孢桿菌屬(Bacillus)、伯克氏菌屬(Burkholderia)、克雷伯氏菌屬(Klebsiella)、長野雷夫松氏菌屬(Leifsonia),上述菌數分別歸類於α-變形菌綱(Alphaproteobacteria)、β-變形菌綱(Betaproteobacteria)、γ-變形菌綱(Gammaproteobacteria)、放線菌綱(Actinobacteria)以及芽孢桿菌綱(Bacilli)。自上述菌株當中挑選7株根瘤菌株Rhizobium mesosinicum E2BF1 、 Rhizobium tropici E4CF1 、 Rhizobium tropici E4CF2 、 Bradyrhizobium guangxiense A1CS1 、 Bradyrhizobium ottawaense A1DS1 、 Bradyrhizobium ottawaense A1ES1 以及 Bradyrhizobium subterraneum VWNS1 ,並增加參考菌株 Bradyrhizobium diazoefficiens BCRC 13528 進行促進植物生長潛力分析。在游離固氮能力分析中,除了BCRC 13528之外,5株分離菌株E4CF2、A1CS1、A1DS1、A1ES1以及VWNS1同樣的也具有游離固氮活性,當中以VWNS1之活性表現最好,培養7天之菌株活性達5.48992 nmol / hr;在溶磷能力分析中,僅有E4CF1在磷酸三鈣固態培養基上有溶圈的形成,但在活性的部分包含BCRC 13528在內,同樣的也有5株分離菌株具有溶磷活性,其中又以E4CF1、E4CF2、VWNS1表現最佳,培養5-7天之菌液均可產生高於100 μg/mL之水溶性磷含量;在IAA合成能力分析中,BCRC 13528以及所有的分離菌株培養4-5天後均發現具有合成IAA的能力,生成量介於1.471861 μg/mL與42.46753 μg/mL之間。研究中挑選4株菌針對不同來源(彰化、台中、雲林)之臺南九號花生種子進行蛭石回接實驗,結果發現彰化來源的種子經過8週栽培後在每種接菌處理下植株根系均有著生根瘤,其中VWNS1的接菌處理形成的根瘤數量最多,推測接種源自於種子之內生根瘤菌VWNS1與此來源種子之相容性較佳,其他兩種來源在A1ES1以及VWNS1的處理下植株根系亦可著生根瘤。
Rights: 同意授權瀏覽/列印電子全文服務,2021-10-31起公開。
Appears in Collections:土壤環境科學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105039103-1.pdf2.82 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.