Please use this identifier to cite or link to this item:
標題: 鮑氏不動桿菌A1S_0699蛋白質及其基因啟動子之探討
Characterization of Acinetobacter baumannii A1S_0699 protein and its promoter
作者: 游智暐
Chih-Wei Yu
關鍵字: 鮑氏不動桿菌;疫苗;Acinetobacter baumannii;vaccine
引用: 1. Garcia-Quintanilla M, Pulido MR, Lopez-Rojas R, Pachon J, McConnell MJ. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 2013 Mar;21(3):157-63. 2. Ruzin, A., D. Keeney, and P.A. Bradford. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus–Acinetobacter baumannii complex. J Antimicrob Chemother. 2007 May;59(5):1001-4. 3. del Mar Tomas M, Cartelle M, Pertega S, Beceiro A, Llinares P, Canle D, Molina F, Villanueva R, Cisneros JM, Bou G. Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. Clin Microbiol Infect. 2005 Jul;11(7):540-6. 4. Wendt C, Dietze B, Dietz E, Rüden H. Survival of Acinetobacter baumannii on dry surfaces. J Clin Microbiol 1997 Jun;35(6):1394-7. 5. Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010 Mar;35(3):219-26. 6. McConnell MJ, Pachón J. Expression, purification, and refolding of biologically active Acinetobacter baumannii OmpA from Escherichia coli inclusion bodies. Protein Expr Purif. 2011 May;77(1):98-103. 7. Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar EP, Dunman PM. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun. 2010 May;78(5):1952-62. 8. Smani Y, Dominguez-Herrera J, Pachón J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii. J Infect Dis. 2013 Nov 15;208(10):1561-70. 9. Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C, Reiz B, Cordwell SJ, Whittal R, Schild S, Feldman MF. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 2012 Jun 7;8(6):e1002758. 10. Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol. 2013 Apr;53(4):303-17. 11. Zimbler DL, Penwell WF, Gaddy JA, Menke SM, Tomaras AP, Connerly PL, Actis LA. Iron acquisition functions expressed by the human pathogen Acinetobacter baumannii. Biometals. 2009 Feb;22(1):23-32. 12. Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. J Med Microbiol. 2007 Feb;56(Pt 2):165-71. 13. Boll JM, Tucker AT, Klein DR, Beltran AM, Brodbelt JS, Davies BW, Trent MS. Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. MBio. 2015 May 19;6(3):e00478-15. 14. Lin L, Tan B, Pantapalangkoor P, Ho T, Baquir B, Tomaras A, Montgomery JI, Reilly U, Barbacci EG, Hujer K, Bonomo RA, Fernandez L, Hancock RE, Adams MD, French SW, Buslon VS, Spellberg B. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. MBio. 2012 Oct 2;3(5). pii: e00312-12. 15. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002 Sep;8(9):881-90. 16. Raad II, Mohamed JA, Reitzel RA, Jiang Y, Dvorak TL, Ghannoum MA, Hachem RY, Chaftari AM. The prevention of biofilm colonization by multidrug-resistant pathogens that cause ventilator-associated pneumonia with antimicrobial-coated endotracheal tubes. Biomaterials. 2011 Apr;32(11):2689-94. 17. Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol. 2008 May;190(9):3386-92. 18. Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology. 2008 Nov;154(Pt 11):3398-409. 19. Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol. 2008 Feb;190(3):1036-44. 20. Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-beta-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol. 2009 Oct;191(19):5953-63. 21. Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun. 2009 Aug;77(8):3150-60. 22. Armitano J, Méjean V, Jourlin-Castelli C. Gram-negative bacteria can also form pellicles. Environ Microbiol Rep. 2014 Dec;6(6):534-44. 23. Yuan J, Chen Y, Zhou G, Chen H, Gao H. Investigation of roles of divalent cations in Shewanella oneidensis pellicle formation reveals unique impacts of insoluble iron. Biochim Biophys Acta. 2013 Nov;1830(11):5248-57. 24. Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K. Acetic acid fermentation of acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem. 2010 Aug 7;74(8):1591-7. 25. Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect. 2012 Jan;80(1):56-60. 26. Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J Bacteriol. 2007 Jul;189(13):4920-31. 27. Yamamoto K, Arai H, Ishii M, Igarashi Y. Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface. Microbes Environ. 2012 Feb;27(3):320-3. 28. Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol. 2007 Jun;189(12):4418-24. 29. Jarrell KF, McBride MJ. The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol. 2008 Jun;6(6):466-76. 30. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6901-4. 31. Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972 Dec;36(4):478-503. 32. Clemmer KM, Bonomo RA, Rather PN. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology. 2011 Sep;157(Pt 9):2534-44. 33. Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. MBio. 2013 Aug 6;4(4). pii: e00360-13. 34. Mussi MA, Gaddy JA, Cabruja M, Arivett BA, Viale AM, Rasia R, Actis LA. The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J Bacteriol. 2010 Dec;192(24):6336-45. 35. Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH. Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics. 2011 Feb 23;12:126. 36. Wei Q, Minh PN, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, Häussler S, Cornelis P. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res. 2012 May;40(10):4320-33. 37. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395-418. 38. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013 Jul;11(7):443-54. 39. Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One. 2012 Jun;7(6):e40019. 40. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, Snyder M. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 2007 Mar 1;21(5):601-14. 41. Mendez JA, Soares NC, Mateos J, Gayoso C, Rumbo C, Aranda J, Tomas M, Bou G. Extracellular proteome of a highly invasive multidrug-resistant clinical strain of Acinetobacter baumannii. J Proteome Res. 2012 Dec 7;11(12):5678-94. 42. Heindorf M, Kadari M, Heider C, Skiebe E, Wilharm G. Impact of Acinetobacter baumannii Superoxide Dismutase on Motility, Virulence, Oxidative Stress Resistance and Susceptibility to Antibiotics. PLoS One. 2014 Jul 7;9(7):e101033. 43. Longkumer T, Parthasarathy S, Vemuri SG, Siddavattam D. OxyR-dependent expression of a novel glutathione S-transferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of organophosphate insecticides. Microbiology. 2014 Jan;160(Pt 1):102-12. 44. Lebrun I, Marques-Porto R, Pereira AS, Pereira A, Perpetuo EA. Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini Rev Med Chem 2009 Jun;9(7):820. 45. Frees D, Brøndsted L, Ingmer H. Bacterial proteases and virulence. Subcell Biochem. 2013 Oct;66:161-92. 46. Blom AM, Hallström T, Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol. 2009 Sep;46(14):2808-17. 47. Murray GL, Tsyganov K, Kostoulias XP, Bulach DM, Powell D, Creek DJ, Boyce JD, Paulsen IT, Peleg AY. Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. J Infect Dis. 2017 Feb 15;215(suppl_1):S52-S57. 48. Gandhi JA, Ekhar VV, Asplund MB, Abdulkareem AF, Ahmadi M, Coelho C, Martinez LR. Alcohol enhances Acinetobacter baumannii-associated pneumonia and systemic dissemination by impairing neutrophil antimicrobial activity in a murine model of infection. PLoS One. 2014 Apr 21;9(4):e95707. 49. Huang W, Wang S, Yao Y, Xia Y, Yang X, Long Q, Sun W, Liu C, Li Y, Ma Y. OmpW is a potential target for eliciting protective immunity against Acinetobacter baumannii infections. Vaccine. 2015 Aug 26;33(36):4479-85. 50. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful model to investigate bacterial pathogensis. J Vis Exp. 2012 Dec 11;(70):e4392. 51. Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence gene. Microbes Infect. 2000 Feb;2(2):157-66. 52. Jacobs AC, Thompson MG, Black CC, Kessler JL, Clark LP, McQueary CN, Gancz HY, Corey BW, Moon JK, Si Y, Owen MT, Hallock JD, Kwak YI, Summers A, Li CZ, Rasko DA, Penwell WF, Honnold CL, Wise MC, Waterman PE, Lesho EP, Stewart RL, Actis LA, Palys TJ, Craft DW, Zurawski DV. AB5075, a Highly Virulent Isolate of Acinetobacter baumannii, as a Model Strain for the Evaluation of Pathogenesis and Antimicrobial Treatments. MBio. 2014 May 27; 5(3):e01076-14. 53. Liu D, Liu ZS, Hu P, Cai L, Fu BQ, Li YS, Lu SY, Liu NN, Ma XL, Chi D, Chang J, Shui YM, Li ZH, Ahmad W, Zhou Y, Ren HL. Characterization of surface antigen protein 1 (SurA1) from Acinetobacter baumannii and its role in virulence and fitness. Vet Microbiol. 2016 Apr 15;186:126-38. 54. Schier AF. Genomics: Zebrafish earns its stripes. Nature. 2013 Apr 25;496(7446):443-4. 55. Lieschke GJ, Trede NS. Fish immunology. Curr Biol. 2009 Aug 25;19(16):R678-82. 56. Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 2013 Sep;9(9):e1003588. 57. Bhuiyan MS, Ellett F, Murray GL, Kostoulias X, Cerqueira GM, Schulze KE, Mahamad Maifiah MH, Li J, Creek DJ, Lieschke GJ, Peleg AY. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9599-604. 58. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 2005 Feb 23; 24(4):824-35. 59. Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol. 2009 Aug; 16(8):840-6. 60. Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol. 2010 Dec; 78(6):1332-47. 61. Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell. 2008 Dec 26; 32(6):827-37. 62. CHAMBERLIN M, BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15; 48():81-94. 63. Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF. Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990 Jun 25; 18(12):3529-35. 64. Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF. Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci U S A. 2000 Feb 15; 97(4):1683-8. 65. Boslego JW, Tramont EC, Chung RC, McChesney DG, Ciak J, Sadoff JC, Piziak MV, Brown JD, Brinton CC Jr, Wood SW. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine. 1991 Mar; 9(3):154-62. 66. 涂怡鬆,Mcat37 對 Acinetobacter baumannii 殺菌力評估與 Acinetobacter baumannii Pase1 之功能探討。國立中興大學分子生物研究所碩士論文,2017。 67. Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka , Hammer B, Zimmermann O, Ziesing S, Wichelhaus TA, Hunfeld KP, Borgmann S, Gröbner S, Higgins PG, Seifert H, Busse HJ, Witte W, Pfeifer Y, Wilharm G. Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol. 2012 Jul;302(3):117-28. 68. Lichstein HC, Soule MH. Studies of the Effect of Sodium Azide on Microbic Growth and Respiration: I. The Action of Sodium Azide on Microbic Growth. J Bacteriol. 1944 Mar;47(3):221-30. 69. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995 Jul;203(3):253-310. 70. Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One. 2011 Feb 28;6(2):e17027. 71. Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016 May;2016:2475067. 72. Choi CH, Hyun SH, Lee JY, Lee JS, Lee YS, Kim SA, Chae JP, Yoo SM, Lee JC. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell Microbiol. 2008 Feb;10(2):309-19. 73. Mackie GA. RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol. 2013 Jan;11(1):45-57. 74. Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii: clinical features, epidemiology, and predictors of mortality. Medicine (Baltimore). 1995 Nov;74(6):340-9. 75. Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol. 2001 Apr;99(1):7-17. 76. Stohl EA, Chan YA, Hackett KT, Kohler PL, Dillard JP, Seifert HS. Neisseria gonorrhose virulence factor NG1686 is a bifunctional M23B familymetallopetidase that influence resistance hydrogen peroxide and colonymorphology. J Biol Chem. 2012 Mar 30;287(14):11222-33. 77. van der Sar AM, et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol. 2003 Sep;5(9):601-11. 78. Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol. 2008 Nov;10(11):2312-25. 79. Runft DL, et al. Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol. 2014 Mar;80(5):1710-7. 80. van der Vliet A, Janssen-Heininger YM. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem. 2014 Mar;115(3):427-35. 81. Murray GL, Tsyganov K, Kostoulias XP, Bulach DM, Powell D, Creek DJ, Boyce JD, Paulsen IT, Peleg AY. Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. J Infect Dis. 2017 Feb 15;215(suppl_1):S52-S57. 82. Carl A. Schnaitman. Effect of Ethylenediaminetetraacetic Acid, Triton X-100, and Lysozyme on the Morphology and Chemical Composition of Isolated Cell Walls of Escherichia coli. J Bacteriol. 1971 Oct; 108(1): 553–563.
鮑氏不動桿菌 ( Acinetobacter baumannii ) 是革蘭氏陰性菌,為一伺機性病原菌,能適應多種環境,對院內免疫力低下的病人容易造成肺炎、腦膜炎、皮膚及軟組織感染甚至是全身性的敗血症,現今臨床上分離出的 A. baumannii 多具有抗藥性,造成抗生素治療上受到限制,疫苗為另一可行之防疫策略。A1S_0699 (以下稱為 Pase2) 是實驗室先前鑑定具疫苗潛力之抗原,在小鼠能夠產生有保護力的免疫反應,但在一般培養情況下以 Pase2 重組蛋白質取得的抗血清無法辨認原菌,顯示 Pase2 在 A. baumannii 的表現是受調控。在本研究我構築 Pase2 的 coding sequence 包含不同上游序列從 60- 到 200- bp 選殖至載體送入 A. baumannii可偵測到蛋白質表現,且在上游序列 60- bp 有最高的表現量,但在上游序列 300- bp 幾乎檢測不到蛋白質表現。證實上游序列 300- bp DNA 片段能形成專一性的 DNA-protein complex 之後,我分別用上游序列 60- 與 300- bp DNA 片段進行 DNA pull down,透過 SDS-PAGE 分析發現結合在這兩個 DNA 片段上的蛋白質有些微不同。另外我在 log phase 的 wild type A. baumannii 可檢測到 Pase2轉錄情形,但在 stationary phase 則無法,從結果推測 A. baumannii 表現 Pase2 可能是受到轉錄或轉譯後調控。接著我分析表現 Pase2 的 A. baumannii 與mock strain 之間性狀的差異,實驗結果發現表現 Pase2 的 A. baumannii 對 H2O2 有較高的抗性,而且在斑馬魚胚胎模型中具有更強的毒性,推測 Pase2可以透過增加對氧化壓力的抗性,並在宿主的先天性免疫中保護 A. baumannii,從而增強其感染力。

Acinetobacter baumannii is an opportunistic gram-negative pathogen that can adapt to a variety of environments. It causes severe nosocomial infections including pneumonia, meningitis, skin soft tissue infections and bacteremia in immunocompromised patients. The emergence of multidrug-resistant strains makes the treatment of A. baumannii extremely difficult. In addition to search for new drugs, vaccination is the most plausible approach to prevent infectious diseases. A1S_0699 (Pase2) is a vaccine candidate previously identified in our laboratory. This protein is not detected in cultured A. buamannii using antibody raised against the recombinant Pase2 while immunized mice were protected from A. buamannii infection suggesting that the expression of Pase2 is regulated. In this study I constructed plasmids carrying DNA fragments containing the complete coding sequence of Pase2 with varied length of the upstream sequences and transformed into A. baumannii. Pase2 protein was detected in A. baumannii harvesting a plasmid with 60- to 200- bp upstream sequences; the highest expression was observed in plasmid with upstream 60- bp. However, Pase2 was barely detectable in plasmid with 300- bp upstream sequence. After demonstrating the specific DNA-protein interaction using the upstream 300-bp DNA fragment, I performed DNA pull down experiments with the upstream 60-bp and 300-bp DNA fragments, respectively. SDS-PAGE showed that the proteins bound to these two DNA fragment are slightly different. Interestingly, I also detected Pase2 transcript in the log phase of the wild type A. baumannii but not that from bacteria at stationary phase. Together, these results suggested that the expression of Pase2 protein in A. baumannii is likely subjected to transcription and post-translational regulation. Next, I examined the phenotypic differences between a Pase2 expressing A. baumannii strain with a mock strain. The results showed that A. baumannii expressing Pase2 protein is more resistant to H2O2 and more virulent in the zebrafish embryos model. Together, these data indicate that Pase2 may protect A. baumannii against the host innate immunity by increasing the resistance to oxidative stress thus enhancing its infectivity.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-30起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104055022-1.pdf3.17 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.