Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97563
DC FieldValueLanguage
dc.contributor楊明德zh_TW
dc.contributorMing-Te Yangen_US
dc.contributor.author陳震zh_TW
dc.contributor.authorChen Chenen_US
dc.contributor.other分子生物學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T05:48:04Z-
dc.identifier.citation袁芳偉 (1998) 利用本土嗜鹽海洋球菌 Marinococcus sp. 醱酵生產肌膚抗皺成分 entoine 之研究。元智大學生物科技與工程研究所碩士論文。 何建、黃星、顧立峰 (2006) 鹽單胞菌屬 BYS-1 四氫嘧啶合成基因 ectABC 克隆及其鹽激表達。微生物學通報,46(1),28-32 楊進龍、郎亞軍、王越 (2006) 用耐鹽菌SL07合成ectoine。大連輕工業學報, 25(3),176-178。 龚皎 (2012) 大腸桿菌中四氫嘧啶合成通路的建構及優化。蘭州大學細胞生物學研究所碩士論文。 吳倍儀 (2014) Halomanas magadiensis ectoine 合成酶基因選殖並在大腸菌進行分析表現。中興大學分子生物研究所碩士論文。 Abdel-Aziz, H., Wadie, W., Scherner, O., Efferth, T., and Khayyal, M. T. (2015) Bacteria-derived compatible solutes ectoine and 5 alpha-hydroxyectoine act as intestinal barrier stabilizers to ameliorate experimental inflammatory bowel disease. J Nat Prod 78, 1309-1315 Argandona, M., Nieto, J. J., Iglesias-Guerra, F., Calderon, M. I., Garcia-Estepa, R., and Vargas, C. (2010) Interplay between Iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens. Appl Environ Microb 76, 3575-3589 Becker, J., Schafer, R., Kohlstedt, M., Harder, B. J., Borchert, N. S., Stoveken, N., Bremer, E., and Wittmann, C. (2013) Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb Cell Fact 12, 110 Bestvater, T., Louis, P., and Galinski, E. A. (2008) Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline systems 4, 12 Biellmann, J. F., Eid, P., Hirth, C., and Jornvall, H. (1980) Aspartate-beta-semialdehyde dehydrogenase from Escherichia coli purification and general properties. Eur J Biochem 104, 53-58 Cahyanto, M. N., Kawasaki, H., Nagashio, M., Fujiyama, K., and Seki, T. (2006) Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum. Microbiology 152, 105-112 Cantera, S., Lebrero, R., Sadornil, L., Garcia-Encina, P. A., and Munoz, R. (2016) Valorization of CH4 emissions into high-added-value products: assessing the production of ectoine coupled with CH4 abatement. J Environ Manage 182, 160-165 Chen, R. F., Zhu, L. J., Lv, L. H., Yao, S., Li, B., and Qian, J. Q. (2017) Optimization of the extraction and purification of the compatible solute ectoine from Halomonas elongate in the laboratory experiment of a commercial production project. World J Microb Biot 33, 116 Chen, W., Zhang, S., Jiang, P. X., Yao, J., He, Y. Z., Chen, L. C., Gui, X. W., Dong, Z. Y., and Tang, S. Y. (2015) Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng 30, 149-155 Czech, L., Stoveken, N., and Bremer, E. (2016) EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb Cell Fact 15, 126 Da Costa, M. S., Santos, H., and Galinski, E. A. (1998) An overview of the role and diversity of compatible solutes in bacteria and archaea. Adv Biochem Eng Biot 61, 117-153 Fallet, C., Rohe, P., and Franco-Lara, E. (2010) Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng 107, 124-133 Galinski, E. A., Pfeiffer, H. P., and Truper, H. G. (1985) 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149, 135-139 Guzman, H., Van-Thuoc, D., Martin, J., Hatti-Kaul, R., and Quillaguaman, J. (2009) A process for the production of ectoine and poly (3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biot 84, 1069-1077 Hadfield, A., Shammas, C., Kryger, G., Ringe, D., Petsko, G. A., Ouyang, J., and Viola, R. E. (2001) Active site analysis of the potential antimicrobial target aspartate semialdehyde dehydrogenase. Biochemistry 40, 14475-14483 Haggstrom, L. (1977) Mutant of Methylomonas Methanolica and Its Characterization with respect to biomass production from methanol. Appl Environ Microb 33, 567-576 He, Y. Z., Gong, J., Yu, H. Y., Tao, Y., Zhang, S., and Dong, Z. Y. (2015) High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb Cell Fact 14, 55 Ialenti, A., Di Meglio, P., Grassia, G., Maffia, P., Di Rosa, M., Lanzetta, R., Molinaro, A., Silipo, A., Grant, W., and Ianaro, A. (2006) A novel lipid A from Halomonas magadiensis inhibits enteric LPS-induced human monocyte activation. Eur J Immunol 36, 354-360 Jebbar, M., Sohn-Bosser, L., Bremer, E., Bernard, T., and Blanco, C. (2005) Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol 187, 1293-1304 Kikuchi, Y., Kojima, H., and Tanaka, T. (1999) Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol Lett 173, 211-215 Lee, K. H., Park, J. H., Kim, T. Y., Kim, H. U., and Lee, S. Y. (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3, 149 Lentzen, G., and Schwarz, T. (2006) Extremolytes: Natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72, 623-634 Leon, M. J., Hoffmann, T., Sanchez-Porro, C., Heider, J., Ventosa, A., and Bremer, E. (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: Physiology and Genomics. Front Microbiol 9, 108 Li, Q. Q., Mu, Z. X., Zhao, R., Dahal, G., Viola, R. E., Liu, T., Jin, Q., and Cui, S. (2016) Structural insights into the tetrameric state of aspartate-beta-semialdehyde dehydrogenases from fungal species. Sci Rep 6, 21067 Louis, P., and Galinski, E. A. (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiol-Uk 143, 1141-1149 Lu, Z. Y., Guo, X. J., Li, H., Huang, Z. Z., Lin, K. F., and Liu, Y. D. (2015) High-throughput screening for a moderately halophilic phenol-degrading strain and Its salt tolerance response. Int J Mol Sci 16, 11834-11848 Ma, C. W., Xiu, Z. L., and Zeng, A. P. (2012) Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation. PloS one 7, e31529 Manjasetty, B. A., Chance, M. R., Burley, S. K., Panjikar, S., and Almo, S. C. (2014) crystal structure of Clostridium acetobutylicum aspartate kinase (CaAK): An important allosteric enzyme for amino acids production. Biotechnol Rep 3, 73-85 Ning, Y., Wu, X., Zhang, C., Xu, Q., Chen, N., and Xie, X. (2016) Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng 36, 10-18 Pastor, J. M., Bernal, V., Salvador, M., Argandona, M., Vargas, C., Csonka, L., Sevilla, A., Iborra, J. L., Nieto, J. J., and Canovas, M. (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 288, 17769-17781 Rodriguez-Moya, J., Argandona, M., Iglesias-Guerra, F., Nieto, J. J., and Vargas, C. (2013) Temperature- and salinity-decoupled overproduction of hydroxyectoine by Chromohalobacter salexigens. Appl Environ Microbiol 79, 1018-1023 Sadeghi, A., Soltani, B. M., Nekouei, M. K., Jouzani, G. S., Mirzaei, H. H., and Sadeghizadeh, M. (2014) Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Microbiol Res 169, 699-708 Salar-Garcia, M. J., Bernal, V., Pastor, J. M., Salvador, M., Argandona, M., Nieto, J. J., Vargas, C., and Canovas, M. (2017) Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens. Microb Cell Fact 16, 23 Schubert, T., Maskow, T., Benndorf, D., Harms, H., and Breuer, U. (2007) Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol 73, 3343-3347 Schwibbert, K., Marin-Sanguino, A., Bagyan, I., Heidrich, G., Lentzen, G., Seitz, H., Rampp, M., Schuster, S. C., Klenk, H. P., Pfeiffer, F., Oesterhelt, D., and Kunte, H. J. (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 13, 1973-1994 Seip, B., Galinski, E. A., and Kurz, M. (2011) Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Appl Environ Microbiol 77, 1368-1374 Shao, Z. H., Deng, W. X., Li, S. Y., He, J. M., Ren, S. X., Huang, W. R., Lu, Y. H., Zhao, G. P., Cai, Z. M., and Wang, J. (2015) GlnR-Mediated regulation of ectABCD Transcription expands the role of the GlnR regulon to osmotic stress management. J Bacteriol 197, 3041-3047 Stadtman, E. R., Cohen, G. N., and Lebras, G. (1961) Feedback inhibition and repression of aspartokinase activity in Escherichia coli. Ann Ny Acad Sci 94, 952-959 Stepniewska, Z., Goraj, W., Kuzniar, A., Pytlak, A., Ciepielski, J., and Fraczek, P. (2014) Biosynthesis of ectoine by the methanotrophic bacterial consortium isolated from Bogdanka Coalmine (Poland). Appl Biochem Micro+ 50, 594-600 Stoveken, N., Pittelkow, M., Sinner, T., Jensen, R. A., Heider, J., and Bremer, E. (2011) A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 193, 4456-4468 Tang, S. Y., and Cirino, P. C. (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chem 50, 1084-1086 Widderich, N., Kobus, S., Hoppner, A., Riclea, R., Seubert, A., Dickschat, J. S., Heider, J., Smits, S. H., and Bremer, E. (2016) Biochemistry and crystal structure of ectoine synthase: A metal-containing member of the Cupin superfamily. PloS one 11, e0151285 Xu, J. Z., Han, M., Ren, X. D., and Zhang, W. G. (2016) Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli. Biochem Eng J 114, 82-89 Zhang, L. H., Lang, Y. J., and Nagata, S. (2009) Efficient production of ectoine using ectoine-excreting strain. Extremophiles : life under extreme conditions 13, 717-724 Zhu, D., Liu, J., Han, R., Shen, G., Long, Q., Wei, X., and Liu, D. (2014) Identification and characterization of ectoine biosynthesis genes and heterologous expression of the ectABC gene cluster from Halomonas sp. QHL1, a moderately halophilic bacterium isolated from Qinghai Lake. J Microbiol 52, 139-147zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97563-
dc.description.abstract耐鹽菌株 Halomonas magadiensis 可以生產ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecar boxylic acid),它是一種胺基酸類的相容性物質(compatible solute),可以有效的阻止滲透壓緊迫而造成菌體的破裂或是脫水,進而避免菌體的死亡。本研究首先探討H. magadiensis 菌株在ectoine生產的最適化條件,發現以無機氮源並將培養液之起始pH值先用NaOH調整至9後,於28℃ 培養48小時,ectoine的生產量可達1,000 mg/L左右。若以1% MSG為碳源,在搖瓶培養 36小時後,胞內 ectoine 生產量更可以達 2,000 mg/L。在培養基碳氮源比例上,發現以1% 麩胺酸鈉(monosodium glutamate, MSG)為碳源配合0.05% 的 (NH4)2SO4作為氮源,可使 ectoine 的最大生產量增至 2,500 mg/L。在研究中亦將H. magadiensis之ectoine生合成基因ectABC進行選殖,並構築在pET21bT-ectABC表現載體上,當導入E. coli Rosetta (DE3)pLysS,可於SDS-PAGE上確認EctABC 三種蛋白皆有表現,並於胞內及胞外偵測到ectoine 的生成。為進一步提升ectoine在E. coli菌株之生產,對ectoine生合成途徑上游之lysC及asd進行選殖,並分別構築於可被arabinose 誘導之pBBad22k表現載體,或帶有可持續表現啟動子之pMTA1載體上。當與pET21bT-ectABC載體在Rosetta (DE3)pLysS菌株進行共表現時,帶有pBBad22k-asd 載體的菌株,會比單獨表現之控制組多出了10% 的ectoine總生產量;而帶有pMTA1-asd 載體的菌株,雖然 Asd 蛋白的表現量較多,但在ectoine總生產量尚反而下降。帶有lysC 之兩種載體與 ectABC共表現時,LysC 蛋白表現不多且ectoine總生產量與單獨表現之菌株差異不大。為避免LysC 本身會受 lysine負回饋而影響到ectoine 的生產,研究中亦構築了兩種lysC之突變株LysCT344M及LysCS321T,並分別置於 pET21b 表現載體上,與在pET24 載體上之ectABC 於Rosetta (DE3)pLysS菌株進行共表現。結果發現帶有LysCT344M及LysCS321T的共表現株,比控制組增加了73% 及17% ectoine 的總表現量,若與帶有正常之lysC 之載體相比,ectoine 總表現量則分別提高3.9倍及 2.9倍。若將 pMTA1-asd 轉殖到 Rosetta(DE3)pLysS(pET21-lysCT344M)( pET24-ectABC)後,在誘導表現36小時後 ectoine 的總量可到達 5,292 ± 250 mg/L。總之,本研究提供了H. magadiensis 菌株在ectoine生產上的最適化條件,並且藉由代謝工程技術可以有效在大腸菌株中進行ectoine的異源生產。zh_TW
dc.description.tableofcontents目錄 前言 1 一、Halomonas 菌屬 1 二、Ectoine的介紹 1 (1) Ectoine 生合成途徑 1 (2) Ectoine的商業生產及應用 2 (3) ectABC於 E. coli中的重組表現 3 (4) ectABC 上游基因 ask 及 asd 的表現 4 三、研究目的與策略 5 材料與方法 6 Ι. 實驗材料 6 Ⅱ. 實驗方法 7 一、菌種培養 7 二、E. coli 質體及染色體 DNA 萃取 7 三、限制酵素切割及 DNA 片段回收 8 四、DNA 黏合反應 9 五、勝任細胞的製備 9 六、轉型作用 (Transformation) 9 七、蛋白質膠體電泳 (SDS-PAGE) 9 八、西方墨點法 (Western blot analysis) 10 九、利用 H. magadiensis 進行 ectoine的生產 10 十、 於 E. coli 生產 ectoine 流程 11 十一、HPLC 樣品前處理及分析 11 十二、以Ni2+-NTA 管柱進行蛋白純化 12 十三、聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 12 十四、測定 Ectoine 胞內外濃度的檢量線製作 13 結果 14 一、 H. magadiensis 最適化培養條件測定 14 (1) 小量培養之最佳氮源分析 14 (2) 小量培養之最佳碳源分析 14 二、 搖瓶培養的最適化碳氮源的分析 15 (1) 搖瓶放大培養的最適條件 15 (2) 搖瓶培養的最佳碳氮源比分析 15 三、 利用 Rosetta(DE3)pLysS(pET21bT-ectABC) 進行 ectoine 的表現分析 15 (1) 不同誘導溫度對 EctABC 三種蛋白表現的影響 15 (2) 不同誘導溫度對 ectoine 生產的影響 16 (3) 不同的培養基對 ectoine 生產的影響 16 (4) IPTG 誘導對於菌株生長、蛋白表現及 ectoine 生產的影響 16 四、 EctABC 蛋白的純化及三者間交互作用之探討 17 (1) 利用 Ni-NTA 管柱純化 EctC 17 (2) 利用 Ni-NTA 管柱純化 EctA 及 EctC 17 五、 E. coli lysC 及 asd 基因的選殖及蛋白表現分析 18 (1) PCR 增幅 DH5α 及 BL21 菌株中的 lysC 及 asd 基因 18 (2) pET21bT-lysC 表現載體的構築 18 (3) pET21bT-asd 表現載體的構築 18 (4) LysC 及Asd 重組蛋白於 pET 載體的表現 18 (5) pBBad22k-lysC 表現載體構築 19 (6) pBBad22k-asd 表現載體構築 19 (7) LysC 及Asd 重組蛋白於 pBBad22k 載體的表現 19 (8) pMTA1-lysC、pMTA1-asd 及 pMTA1-ectABC 持續表現型質體構築 20 (9) LysC 及 Asd 重組蛋白於 pMTA1 載體的表現 20 八、 於 Rosetta(DE3)pLysS 菌株進行質體共表現及 ectoine 產量分析 20 (1)共表現菌株於 LB 及 M9 培養液中的蛋白表現 20 (2)共表現株於 M9 中 ectoine 的生產量 21 九、 LysC 的負回饋抑制突變株構築及共表現探討 21 (1) LysCT344M 的構築 22 (2) lysCS321T 的構築 22 (3) pET24-ectABC 的構築 22 (4) Rosetta(DE3)pLysS(pET24-ectABC) 與共表現株的蛋白表現 22 (5) Rosetta(DE3)pLysS(pET24-ectABC) 與共表現株的 ectoine 表現分析 23 (6) 於 Rosetta(DE3)pLysS(pET21bT-lysCT344M)(pET24-ectABC) 中共表現 Asd 23 討論 25 一、 Halomonas 菌屬 ectoine 生產基因序列比對 25 二、 最適化 H. magadiensis 生產 ectoine 25 三、 於 Rosetta(DE3)pLysS 中進行重組 EctABC 蛋白的表現 27 四、 EctA 及 EctC 的親和性管柱純化 28 五、 lysC 及 asd 的構築及表現 28 六、 LysC 及 Asd 的表現對 ectoine 生產的影響 30 七、 lysC突變株對於 ectoine 表現的影響 30 八、 Asd 對於 ectoine 生產的探討 31 九、 未來工作項目 32 參考文獻 33 表 39 圖 47 附錄 76 附錄一、H. magadiensis 與其他 ectoine 生產菌株的 ectA、 ectB 及 ectC 核酸序列比對 76 (1) ectA 的核酸序列比對結果 76 (2) ectB 的核酸序列比對結果 78 (3) ectC 的核酸序列比對結果 82 附錄二、H. magadiensis與其他ectoine生產菌株的EctA、EctB及 EctC胺基酸序列比對。 84 (1) EctA胺基酸序列比對結果 84 (2) EctB 胺基酸序列比對結果 85 (3) EctC 胺基酸序列比對結果 86 附錄三、lysC 及 asd 基因以及 lysC 單點突變定序結果 87 (1) lysC 從 DH5α中PCR增幅完成後定序結果 87 (2) asd 從 DH5α 中PCR增幅完成後定序結果 88 (3) lysC單點突變的LysCT344M 及 LysCS321T 核苷酸及胺基酸 序列比對結果 89 附錄四、 於 LysC 及 Asd 中各功能性區域分布的位置以及相關研究 單點突變位置 90 (1) LysC 胺基酸功能性區域及單點突變位分布 90 (2) Asd 胺基酸功能性區域及單點突變位分布 91 附錄五、 HPLC 分析於 28℃ 培養 H. magadiensis 的 ectoine 及 hydroxyectoine 的 210 nm 吸光值結果比對 92 附錄六、培養基與緩衝液 93 表目錄 表一、本實驗所使用之菌株 39 表二、本實驗所使用之質體 40 表三、本實驗所使用之引子 42 表四、 H. magadiensis 與各ectoine生產菌株間ectABC 核苷酸及胺基酸 序列相似度比較 43 表五、 Rosetta(DE3)pLysS(pET21bT-ectABC)及其共表現株於M9中誘導表現 24小時後ectoine的胞內外生產量 44 表六、 Rosetta(DE3)pLysS(pET24-ectABC)及其共表現株於 M9中誘導表現 24 小時後 ectoine 胞內外生產量 44 表七、 Rosetta(DE3)pLysS(pET21bT-lysCT344M)(pET24-ectABC)及其與 pMTA1-asd共表現株於 M9中誘導表現 24 及 36小時後 ectoine 胞內外生產量 44 表八、 各文獻中 ectoine 產量產率的比較 46 圖目錄 圖一、ectoine 生合成代謝途徑 2 圖二、胞內外Ectoine濃度的標準品檢量線。 47 圖三、H. magadiensis 於不同的氮源中培養48小時後 ectoine 的生產量 48 圖四、利用不同氮源培養 H. magadiensis,並以不同校正液調整培養液 pH值,培養48小時後胞內ectoine的生產量 49 圖五、不同碳源對H. magadiensis胞內 ectoine 生產之影響 50 圖六、利用搖瓶培養 H. magadiensis的最適化碳氮源分析 51 圖七、利用搖瓶培養 H. magadiensis的最佳碳氮源比率分析 52 圖八、不同誘導溫度對Rosetta(DE3)pLysS(pET21bT-ectABC)的蛋白表現及 ectoine生產的影響 53 圖九、添加MSG之M9或添加NaCl之MG培養液對於 Rosetta(DE3)pLysS (pET21bT-ectABC) 生產 ectoine 之影響 54 圖十、次培養不同時間進行誘導對 Rosetta(DE3)pLysS(pET21bT-ectABC) 菌株生長及EctABC三種蛋白表現的影響 55 圖十 C、次培養不同時間進行誘導對於Rosetta(DE3)pLysS (pET21bT-ectABC)菌株生產 ectoine的影響 56 圖十一、利用SDS-PAGE及西方墨點法分析以Ni-NTA 管柱純化從 Rosetta(DE3) pLysS(pET21bT-ectABC)表現之EctC 57 圖十二、利用 SDS-PAGE及西方墨點法分析以Ni-NTA管柱純化從Rosetta(DE3)pLysS(pMT21-ectABC)菌株表現之EctA及EctC 58 圖十三、利用聚合酶鏈鎖反應增幅E. coli 染色質上lysC及asd基因片段 59 圖十四、構築pET21bT-lysC表現載體 60 圖十五、構築pET21bT-asd表現載體 61 圖十六、SDS-PAGE及western blot分析於Rosetta(DE3)pLysS(pET21bT-asd) 中及 Rosetta(DE3)pLysS(pET21bT-lysC)中Asd及LysC蛋白表現 62 圖十七、構築pBBad22k-lysC表現載體 63 圖十八、構築pBBad22k-asd表現載體 64 圖十九、SDS-PAGE分析pBBad22k-asd及pBBad22k-lysC表現載體於Rosetta(DE3)pLysS 及DH5α菌株中重組蛋白的表現 65 圖二十、構築pMTA1-lysC、pMTA1-asd及 pMTA1-ectABC表現載體 66 圖二十一、SDS-PAGE分析 pMTA1-lysC及pMTA1-asd 於 Rosetta(DE3)pLysS中的重組蛋白表現 67 圖二十二、 SDS-PAGE分析於Rosetta(DE3)pLysS各共表現株的蛋白表現 68 圖二十三、 Rosetta(DE3)pLysS各共表現株於不同生長時期胞內外的 ectoine生產量 69 圖二十四、構築 pET21bT-lysCT344M 表現載體 70 圖二十五、構築pET21bT-lysCS321T表現載體 71 圖二十六、構築pET24b-ectAB'C表現載體 72 圖二十七、 SDS-PAGE及western blot分析 Rosetta(DE3)pLysS (pET24b-ectAB'C)及其共表現株於M9中的蛋白表現 73 圖二十八、 HPLC 分析 Rosetta(DE3)pLysS(pET24b-ectAB'C)及其 共表現株於M9中的 ectoine 生產量 74 圖二十九、 HPLC 分析 Rosetta(DE3)pLysS(pET21bT-lysCT344M)(pET24b-ectAB'C)及其與 Asd 共表現株於 M9 中的 ectoine 生產量 75zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subject耐鹽菌株zh_TW
dc.subject相容性物質zh_TW
dc.subject最適碳氮源zh_TW
dc.subjectectoineen_US
dc.subjectHalomonas magadiensisen_US
dc.subjectcompatible soluteen_US
dc.title建構重組大腸菌株提升異源 ectoine 之生產zh_TW
dc.titleConstruction of recombinant E. coli strains for enhancing heterologous ectoine productionen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-17zh_TW
dc.date.openaccess10000-01-01-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.languageiso639-1zh_TW-
item.fulltextwith fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
Appears in Collections:分子生物學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104055009-1.pdf6.82 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.