Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97564
標題: 探討PAK2的上游調控機制及其對於肺癌進程的影響
To investigate the upstream mechanism of PAK2 and it's function in lung cancer progression
作者: 林德珊
Te-Shan Lin
關鍵字: 肺癌;Lung cancer;PAK2
引用: 1. Siegel, R. L., Miller, K. D., and Jemal, A. (2018) Cancer statistics, 2018. CA Cancer J Clin 68, 7-30 2. 中華民國行政院衛生福利部. (2016) 十大癌症死因. 3. Howlader, N., Ries, L. A., Stinchcomb, D. G., and Edwards, B. K. (2009) The impact of underreported Veterans Affairs data on national cancer statistics: analysis using population-based SEER registries. J Natl Cancer Inst 101, 533-536 4. Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M., and Spivack, S. D. (2013) Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143, e1S-e29S 5. Wu, X., Wang, L., Ye, Y., Aakre, J. A., Pu, X., Chang, G. C., Yang, P. C., Roth, J. A., Marks, R. S., Lippman, S. M., Chang, J. Y., Lu, C., Deschamps, C., Su, W. C., Wang, W. C., Huang, M. S., Chang, D. W., Li, Y., Pankratz, V. S., Minna, J. D., Hong, W. K., Hildebrandt, M. A., Hsiung, C. A., and Yang, P. (2013) Genome-wide association study of genetic predictors of overall survival for non-small cell lung cancer in never smokers. Cancer Res 73, 4028-4038 6. Reinmuth, N., Stumpf, P., Stumpf, A., Muley, T., Kobinger, S., Hoffmann, H., Herth, F. J., Schnabel, P. A., Bischoff, H., and Thomas, M. (2014) Characteristics of lung cancer after a previous malignancy. Respir Med 108, 910-917 7. Gutierrez, M. E., Choi, K., Lanman, R. B., Licitra, E. J., Skrzypczak, S. M., Pe Benito, R., Wu, T., Arunajadai, S., Kaur, S., Harper, H., Pecora, A. L., Schultz, E. V., and Goldberg, S. L. (2017) Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer 18, 651-659 8. Mazieres, J., Barlesi, F., Filleron, T., Besse, B., Monnet, I., Beau-Faller, M., Peters, S., Dansin, E., Fruh, M., Pless, M., Rosell, R., Wislez, M., Fournel, P., Westeel, V., Cappuzzo, F., Cortot, A., Moro-Sibilot, D., Milia, J., and Gautschi, O. (2016) Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann Oncol 27, 281-286 9. Park, K., Yu, C. J., Kim, S. W., Lin, M. C., Sriuranpong, V., Tsai, C. M., Lee, J. S., Kang, J. H., Chan, K. C., Perez-Moreno, P., Button, P., Ahn, M. J., and Mok, T. (2016) First-Line Erlotinib Therapy Until and Beyond Response Evaluation Criteria in Solid Tumors Progression in Asian Patients With Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer: The ASPIRATION Study. JAMA Oncol 2, 305-312 10. George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretic, L., Kong, G., Leenders, F., Lu, X., Fernandez-Cuesta, L., Bosco, G., Muller, C., Dahmen, I., Jahchan, N. S., Park, K. S., Yang, D., Karnezis, A. N., Vaka, D., Torres, A., Wang, M. S., Korbel, J. O., Menon, R., Chun, S. M., Kim, D., Wilkerson, M., Hayes, N., Engelmann, D., Putzer, B., Bos, M., Michels, S., Vlasic, I., Seidel, D., Pinther, B., Schaub, P., Becker, C., Altmuller, J., Yokota, J., Kohno, T., Iwakawa, R., Tsuta, K., Noguchi, M., Muley, T., Hoffmann, H., Schnabel, P. A., Petersen, I., Chen, Y., Soltermann, A., Tischler, V., Choi, C. M., Kim, Y. H., Massion, P. P., Zou, Y., Jovanovic, D., Kontic, M., Wright, G. M., Russell, P. A., Solomon, B., Koch, I., Lindner, M., Muscarella, L. A., la Torre, A., Field, J. K., Jakopovic, M., Knezevic, J., Castanos-Velez, E., Roz, L., Pastorino, U., Brustugun, O. T., Lund-Iversen, M., Thunnissen, E., Kohler, J., Schuler, M., Botling, J., Sandelin, M., Sanchez-Cespedes, M., Salvesen, H. B., Achter, V., Lang, U., Bogus, M., Schneider, P. M., Zander, T., Ansen, S., Hallek, M., Wolf, J., Vingron, M., Yatabe, Y., Travis, W. D., Nurnberg, P., Reinhardt, C., Perner, S., Heukamp, L., Buttner, R., Haas, S. A., Brambilla, E., Peifer, M., Sage, J., and Thomas, R. K. (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47-53 11. Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W., and Buchanan, P. (2015) Lung cancer: Biology and treatment options. Biochim Biophys Acta 1856, 189-210 12. Hayashi, S., Kitada, M., Ishibashi, K., Matsuda, Y., and Miyokawa, N. (2013) Combined large cell neuroendocrine carcinoma with giant cell carcinoma of the lungs: a case report. World J Surg Oncol 11, 205 13. Mantovani, A. (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10, 369-373 14. Bi, X., Xia, X., Mou, T., Jiang, B., Fan, D., Wang, P., Liu, Y., Hou, Y., and Zhao, Y. (2014) Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/beta-catenin signaling inhibition. Eur J Pharmacol 742, 145-152 15. Campbell, P. M., and Der, C. J. (2004) Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol 14, 105-114 16. Brown, G. T., and Murray, G. I. (2015) Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 237, 273-281 17. Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., and Weinberg, R. A. (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68, 3645-3654 18. Petrova, Y. I., Schecterson, L., and Gumbiner, B. M. (2016) Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 27, 3233-3244 19. Powell, E., Piwnica-Worms, D., and Piwnica-Worms, H. (2014) Contribution of p53 to metastasis. Cancer Discov 4, 405-414 20. Bacac, M., and Stamenkovic, I. (2008) Metastatic cancer cell. Annu Rev Pathol 3, 221-247 21. Roeder, R. G. (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21, 327-335 22. Perera, D., Poulos, R. C., Shah, A., Beck, D., Pimanda, J. E., and Wong, J. W. (2016) Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes. Nature 532, 259-263 23. Aitken, A. (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16, 162-172 24. Dougherty, M. K., and Morrison, D. K. (2004) Unlocking the code of 14-3-3. J Cell Sci 117, 1875-1884 25. Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H., Gamblin, S. J., Smerdon, S. J., and Cantley, L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971 26. Bridges, D., and Moorhead, G. B. (2005) 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005, re10 27. Chen, M., Liu, T., Xu, L., Gao, X., Liu, X., Wang, C., He, Q., Zhang, G., and Liu, L. (2014) Direct interaction of 14-3-3zeta with ezrin promotes cell migration by regulating the formation of membrane ruffle. J Mol Biol 426, 3118-3133 28. Sluchanko, N. N., and Gusev, N. B. (2010) 14-3-3 proteins and regulation of cytoskeleton. Biochemistry (Mosc) 75, 1528-1546 29. Pei, J., Song, N., Wu, L., Qi, J., Xia, S., Xu, C., Zheng, B., Yang, J., Qiu, Y., Wang, H., and Jiang, Y. (2018) TCF4/beta-catenin complex is directly upstream of FGF21 in mouse stomach cancer cells. Exp Ther Med 15, 1041-1047 30. Qi, W., Liu, X., Qiao, D., and Martinez, J. D. (2005) Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues. Int J Cancer 113, 359-363 31. Bajpai, U., Sharma, R., Kausar, T., Dattagupta, S., Chattopadhayay, T. K., and Ralhan, R. (2008) Clinical significance of 14-3-3 zeta in human esophageal cancer. Int J Biol Markers 23, 231-237 32. Arora, S., Matta, A., Shukla, N. K., Deo, S. V., and Ralhan, R. (2005) Identification of differentially expressed genes in oral squamous cell carcinoma. Mol Carcinog 42, 97-108 33. Nishimura, Y., Komatsu, S., Ichikawa, D., Nagata, H., Hirajima, S., Takeshita, H., Kawaguchi, T., Arita, T., Konishi, H., Kashimoto, K., Shiozaki, A., Fujiwara, H., Okamoto, K., Tsuda, H., and Otsuji, E. (2013) Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br J Cancer 108, 1324-1331 34. Murata, T., Takayama, K., Urano, T., Fujimura, T., Ashikari, D., Obinata, D., Horie-Inoue, K., Takahashi, S., Ouchi, Y., Homma, Y., and Inoue, S. (2012) 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res 18, 5617-5627 35. Fan, T., Li, R., Todd, N. W., Qiu, Q., Fang, H. B., Wang, H., Shen, J., Zhao, R. Y., Caraway, N. P., Katz, R. L., Stass, S. A., and Jiang, F. (2007) Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 67, 7901-7906 36. Tian, Q., Feetham, M. C., Tao, W. A., He, X. C., Li, L., Aebersold, R., and Hood, L. (2004) Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 101, 15370-15375 37. Chen, C. H., Chuang, S. M., Yang, M. F., Liao, J. W., Yu, S. L., and Chen, J. J. (2012) A novel function of YWHAZ/beta-catenin axis in promoting epithelial-mesenchymal transition and lung cancer metastasis. Mol Cancer Res 10, 1319-1331 38. Gottardi, C. J., and Peifer, M. (2008) Terminal regions of beta-catenin come into view. Structure 16, 336-338 39. Fagotto, F. (2013) Looking beyond the Wnt pathway for the deep nature of beta-catenin. EMBO Rep 14, 422-433 40. Zhang, W., Zhang, H., Wang, N., Zhao, C., Zhang, H., Deng, F., Wu, N., He, Y., Chen, X., Zhang, J., Wen, S., Liao, Z., Zhang, Q., Zhang, Z., Liu, W., Yan, Z., Luu, H. H., Haydon, R. C., Zhou, L., and He, T. C. (2013) Modulation of beta-catenin signaling by the inhibitors of MAP kinase, tyrosine kinase, and PI3-kinase pathways. Int J Med Sci 10, 1888-1898 41. Sokol, S. Y. (2011) Maintaining embryonic stem cell pluripotency with Wnt signaling. Development 138, 4341-4350 42. Rafiq, M. T., Aziz, R., Yang, X., Xiao, W., Stoffella, P. J., Saghir, A., Azam, M., and Li, T. (2014) Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity. PLoS One 9, e111461 43. Kypta, R. M., and Waxman, J. (2012) Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol 9, 418-428 44. Peng, S., Zhu, Y., Lu, B., Xu, F., Li, X., and Lai, M. (2013) TCF7L2 gene polymorphisms and type 2 diabetes risk: a comprehensive and updated meta-analysis involving 121,174 subjects. Mutagenesis 28, 25-37 45. Slattery, M. L., Folsom, A. R., Wolff, R., Herrick, J., Caan, B. J., and Potter, J. D. (2008) Transcription factor 7-like 2 polymorphism and colon cancer. Cancer Epidemiol Biomarkers Prev 17, 978-982 46. Chen, J., Yuan, T., Liu, M., and Chen, P. (2013) Association between TCF7L2 gene polymorphism and cancer risk: a meta-analysis. PLoS One 8, e71730 47. Zhang, C., Qi, L., Hunter, D. J., Meigs, J. B., Manson, J. E., van Dam, R. M., and Hu, F. B. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes 55, 2645-2648 48. Yu, X. W., Xu, Q., Xu, Y., Gong, Y. H., and Yuan, Y. (2014) Expression of the E-cadherin/beta-catenin/tcf-4 pathway in gastric diseases with relation to Helicobacter pylori infection: clinical and pathological implications. Asian Pac J Cancer Prev 15, 215-220 49. Tang, W., Dodge, M., Gundapaneni, D., Michnoff, C., Roth, M., and Lum, L. (2008) A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci U S A 105, 9697-9702 50. Kendziorra, E., Ahlborn, K., Spitzner, M., Rave-Frank, M., Emons, G., Gaedcke, J., Kramer, F., Wolff, H. A., Becker, H., Beissbarth, T., Ebner, R., Ghadimi, B. M., Pukrop, T., Ried, T., and Grade, M. (2011) Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis 32, 1824-1831 51. 蔣依婷. (2015) 探討YWHAZ蛋白在肺癌中扮演的角色及其調控下游基因. 中興大學分子生物學研究所碩士論文 52. Yan, C., and Boyd, D. D. (2006) ATF3 regulates the stability of p53: a link to cancer. Cell Cycle 5, 926-929 53. Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., Hawkins, G. A., D'Agostino, R. B., Jr., Willingham, M. C., and Inoue, K. (2007) Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell 12, 381-394 54. Moncho-Amor, V., Ibanez de Caceres, I., Bandres, E., Martinez-Poveda, B., Orgaz, J. L., Sanchez-Perez, I., Zazo, S., Rovira, A., Albanell, J., Jimenez, B., Rojo, F., Belda-Iniesta, C., Garcia-Foncillas, J., and Perona, R. (2011) DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30, 668-678 55. Liu, Y. X., Wang, J., Guo, J., Wu, J., Lieberman, H. B., and Yin, Y. (2008) DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res 6, 624-633 56. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., and Lim, L. (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40-46 57. Hofmann, C., Shepelev, M., and Chernoff, J. (2004) The genetics of Pak. J Cell Sci 117, 4343-4354 58. Kumar, A., Molli, P. R., Pakala, S. B., Bui Nguyen, T. M., Rayala, S. K., and Kumar, R. (2009) PAK thread from amoeba to mammals. J Cell Biochem 107, 579-585 59. Kumar, R., Gururaj, A. E., and Barnes, C. J. (2006) p21-activated kinases in cancer. Nat Rev Cancer 6, 459-471 60. Arias-Romero, L. E., and Chernoff, J. (2008) A tale of two Paks. Biol Cell 100, 97-108 61. Van den Broeke, C., Radu, M., Chernoff, J., and Favoreel, H. W. (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20, 160-169 62. Kumar, R., Sanawar, R., Li, X., and Li, F. (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605, 20-31 63. Lu, W., Katz, S., Gupta, R., and Mayer, B. J. (1997) Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 7, 85-94 64. Stoletov, K. V., Ratcliffe, K. E., Spring, S. C., and Terman, B. I. (2001) NCK and PAK participate in the signaling pathway by which vascular endothelial growth factor stimulates the assembly of focal adhesions. J Biol Chem 276, 22748-22755 65. Puto, L. A., Pestonjamasp, K., King, C. C., and Bokoch, G. M. (2003) p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem 278, 9388-9393 66. Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, I., Leung, T., and Lim, L. (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1, 183-192 67. Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M., Thomas, D. Y., and Leberer, E. (1998) Interaction of a G-protein beta-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391, 191-195 68. Jaffer, Z. M., and Chernoff, J. (2002) p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34, 713-717 69. Li, X., Wen, W., Liu, K., Zhu, F., Malakhova, M., Peng, C., Li, T., Kim, H. G., Ma, W., Cho, Y. Y., Bode, A. M., Dong, Z., and Dong, Z. (2011) Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem 286, 22291-22299 70. Tang, Y., Yu, J., and Field, J. (1999) Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol Cell Biol 19, 1881-1891 71. Galan Moya, E. M., Le Guelte, A., and Gavard, J. (2009) PAKing up to the endothelium. Cell Signal 21, 1727-1737 72. Radu, M., Semenova, G., Kosoff, R., and Chernoff, J. (2014) PAK signalling during the development and progression of cancer. Nat Rev Cancer 14, 13-25 73. Wei, B. L., Arora, V. K., Raney, A., Kuo, L. S., Xiao, G. H., O'Neill, E., Testa, J. R., Foster, J. L., and Garcia, J. V. (2005) Activation of p21-activated kinase 2 by human immunodeficiency virus type 1 Nef induces merlin phosphorylation. J Virol 79, 14976-14980 74. Jiang, N., Hjorth-Jensen, K., Hekmat, O., Iglesias-Gato, D., Kruse, T., Wang, C., Wei, W., Ke, B., Yan, B., Niu, Y., Olsen, J. V., and Flores-Morales, A. (2015) In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene 34, 2764-2776 75. Mao, L., Deng, W. W., Yu, G. T., Bu, L. L., Liu, J. F., Ma, S. R., Wu, L., Kulkarni, A. B., Zhang, W. F., and Sun, Z. J. (2017) Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer. Int J Cancer 140, 1173-1185 76. Barry, D. M., Xu, K., Meadows, S. M., Zheng, Y., Norden, P. R., Davis, G. E., and Cleaver, O. (2015) Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142, 3058-3070 77. O'Hagan, K. L., Choi, J., Pryshchep, O., Chernoff, J., and Phee, H. (2015) Pak2 Links TCR Signaling Strength to the Development of Regulatory T Cells and Maintains Peripheral Tolerance. J Immunol 195, 1564-1577 78. Bandapalli, O. R., Macher-Goeppinger, S., Schirmacher, P., and Brand, K. (2012) Paracrine signalling in colorectal liver metastases involving tumor cell-derived PDGF-C and hepatic stellate cell-derived PAK-2. Clin Exp Metastasis 29, 409-417 79. Wu, Q., Qin, S. K., Teng, F. M., Chen, C. J., and Wang, R. (2010) Lobaplatin arrests cell cycle progression in human hepatocellular carcinoma cells. J Hematol Oncol 3, 43 80. Hao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., Weber, C. E., Lv, N., Xiao, X., Eichmuller, S. B., and He, D. (2015) miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol 24, 947-952 81. Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B., Andersen, E., Andersson, A. C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Bjorklund, M. G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M., Sterky, F., Stromberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund, E., Walden, A., Wan, J., Wernerus, H., Westberg, J., Wester, K., Wrethagen, U., Xu, L. L., Hober, S., and Ponten, F. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4, 1920-1932 82. Guo, Y., Kenney, S. R., Muller, C. Y., Adams, S., Rutledge, T., Romero, E., Murray-Krezan, C., Prekeris, R., Sklar, L. A., Hudson, L. G., and Wandinger-Ness, A. (2015) R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther 14, 2215-2227 83. Shuang, T., Wang, M., Shi, C., Zhou, Y., and Wang, D. (2015) Down-regulated expression of miR-134 contributes to paclitaxel resistance in human ovarian cancer cells. FEBS Lett 589, 3154-3164 84. Siu, M. K., Wong, E. S., Chan, H. Y., Kong, D. S., Woo, N. W., Tam, K. F., Ngan, H. Y., Chan, Q. K., Chan, D. C., Chan, K. Y., and Cheung, A. N. (2010) Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer 127, 21-31 85. Gao, C., Ma, T., Pang, L., and Xie, R. (2014) Activation of P21-activated protein kinase 2 is an independent prognostic predictor for patients with gastric cancer. Diagn Pathol 9, 55 86. Zhang, Y., Wester, L., He, J., Geiger, T., Moerkens, M., Siddappa, R., Helmijr, J. A., Timmermans, M. M., Look, M. P., van Deurzen, C. H. M., Martens, J. W. M., Pont, C., de Graauw, M., Danen, E. H. J., Berns, E., Meerman, J. H. N., Jansen, M., and van de Water, B. (2018) IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer. Oncogene 37, 1869-1884 87. Chu, Y. W., Yang, P. C., Yang, S. C., Shyu, Y. C., Hendrix, M. J., Wu, R., and Wu, C. W. (1997) Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360 88. Chung, C. T., Niemela, S. L., and Miller, R. H. (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172-2175 89. Heinemeyer, T., Wingender, E., Reuter, I., Hermjakob, H., Kel, A. E., Kel, O. V., Ignatieva, E. V., Ananko, E. A., Podkolodnaya, O. A., Kolpakov, F. A., Podkolodny, N. L., and Kolchanov, N. A. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26, 362-367 90. Molineris, I., Grassi, E., Ala, U., Di Cunto, F., and Provero, P. (2011) Evolution of promoter affinity for transcription factors in the human lineage. Mol Biol Evol 28, 2173-2183 91. Kikuchi, T., Hassanein, M., Amann, J. M., Liu, Q., Slebos, R. J., Rahman, S. M., Kaufman, J. M., Zhang, X., Hoeksema, M. D., Harris, B. K., Li, M., Shyr, Y., Gonzalez, A. L., Zimmerman, L. J., Liebler, D. C., Massion, P. P., and Carbone, D. P. (2012) In-depth proteomic analysis of nonsmall cell lung cancer to discover molecular targets and candidate biomarkers. Mol Cell Proteomics 11, 916-932 92. Davuluri, R. V., Sun, H., Palaniswamy, S. K., Matthews, N., Molina, C., Kurtz, M., and Grotewold, E. (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4, 25 93. Lai, Y. H., Yu, S. L., Chen, H. Y., Wang, C. C., Chen, H. W., and Chen, J. J. (2013) The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 34, 1069-1080 94. Ponjavic, J., Lenhard, B., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., and Sandelin, A. (2006) Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol 7, R78 95. Roy, A. L., and Singer, D. S. (2015) Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40, 165-171 96. Yang, C., Bolotin, E., Jiang, T., Sladek, F. M., and Martinez, E. (2007) Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters. Gene 389, 52-65 97. Ng, Y., Tan, I., Lim, L., and Leung, T. (2004) Expression of the human myotonic dystrophy kinase-related Cdc42-binding kinase gamma is regulated by promoter DNA methylation and Sp1 binding. J Biol Chem 279, 34156-34164 98. Xue, Y., Bi, F., Zhang, X., Zhang, S., Pan, Y., Liu, N., Shi, Y., Yao, X., Zheng, Y., and Fan, D. (2006) Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. Int J Cancer 118, 2965-2972 99. Mukhopadhyay, D., Knebelmann, B., Cohen, H. T., Ananth, S., and Sukhatme, V. P. (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17, 5629-5639 100. Gorrepati, L., Krause, M. W., Chen, W., Brodigan, T. M., Correa-Mendez, M., and Eisenmann, D. M. (2015) Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (Bethesda) 5, 1551-1566 101. Prudnikova, T. Y., and Chernoff, J. (2017) The Group I Pak inhibitor Frax-1036 sensitizes 11q13-amplified ovarian cancer cells to the cytotoxic effects of Rottlerin. Small GTPases 8, 193-198 102. Elfert, S., Weise, A., Bruser, K., Biniossek, M. L., Jagle, S., Senghaas, N., and Hecht, A. (2013) Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex. PLoS One 8, e61867 103. Yochum, G. S., Cleland, R., and Goodman, R. H. (2008) A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Mol Cell Biol 28, 7368-7379 104. Levy, L., Neuveut, C., Renard, C. A., Charneau, P., Branchereau, S., Gauthier, F., Van Nhieu, J. T., Cherqui, D., Petit-Bertron, A. F., Mathieu, D., and Buendia, M. A. (2002) Transcriptional activation of interleukin-8 by beta-catenin-Tcf4. J Biol Chem 277, 42386-42393 105. Arias-Romero, L. E., Villamar-Cruz, O., Huang, M., Hoeflich, K. P., and Chernoff, J. (2013) Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res 73, 3671-3682 106. Zhou, L., Ercolano, E., Ammoun, S., Schmid, M. C., Barczyk, M. A., and Hanemann, C. O. (2011) Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/beta-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia 13, 1101-1112 107. Li, T., Zhang, J., Zhu, F., Wen, W., Zykova, T., Li, X., Liu, K., Peng, C., Ma, W., Shi, G., Dong, Z., Bode, A. M., and Dong, Z. (2011) P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation. Carcinogenesis 32, 659-666 108. Marlin, J. W., Eaton, A., Montano, G. T., Chang, Y. W., and Jakobi, R. (2009) Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 11, 286-297 109. Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschlager, M., and Dolznig, H. (2013) In vitro cell migration and invasion assays. Mutat Res 752, 10-24
摘要: 
肺癌,是近年來最具高發生率和極高死亡率之惡性腫瘤,癌症轉移則是導致病患死亡的主因。過往YWHAZ (14-3-3ζ) 蛋白已被證實在肺腺癌中藉由透過結合β-連鎖蛋白 (β-catenin) 與轉錄因子T-cell factor 4 (TCF-4) 在核內結合並形成複合體,進而促進肺癌轉移與侵襲能力。先前實驗室透過即時定量聚合酶反應 (QPCR) 與微陣列分析 (Microarray) 交叉比對後,找出YWHAZ-β-catenin-TCF4複合體的可能下游調控基因p21-蛋白活化激酶2 (p21 protein-activated kinase 2, PAK2)。PAK2屬絲氨酸/蘇氨酸蛋白激酶,可被多種上游信號如G蛋白Rho家族的Rac和Cdc42啟動,在進化上高度保守。PAK2已被證實在多種腫瘤中均有異常表達,並參與多種調控腫瘤發生的細胞過程包括細胞增殖、細胞凋亡以及細胞骨架的重組,然而目前對PAK2在肺癌轉移上機制仍然不清楚。因此,為了探討YWHAZ-β-catenin-TCF4複合體對PAK2在腫瘤中的調控機制,首先利用生物資訊學方法分析PAK2轉錄起始位置及預測啟動子上的TCF-4結合區域,以聚合酶連鎖反應合成PAK2啟動子-2077/+59片段。接著利用5'片段缺失構築及共同表現β-catenin基因或YWHAZ基因以進行冷光報導基因分析,結果發現在PAK2啟動子-2077/-1547為重要調控轉錄活性區域,而-478/+59區域具一定活性。利用TRANSFEC軟體及JASPAR網站對這兩區域分析,發現具兩個TCF-4轉錄因子結合位-1985/-1977 與-1467/-1459,點突變結果顯示可能透過TCF-4位點以調控PAK2。接著於CL1-0中建立大量表現PAK2之穩定細胞株P1、P2、P3、P4用來進行細胞功能試驗。免疫螢光染色顯示PAK2表現於細胞質和細胞核內。在非依賴性與依賴性細胞聚落形成試驗結果皆顯示大量表現PAK2具顯著的聚落形成。細胞遷移能力試驗不論transwell或傷口癒合試驗,PAK2大量表現時會增加細胞移動的能力,確認PAK2在肺癌中會促進腫瘤的生長並促進細胞的移動能力。

Lung cancer is the leading deceases of the cancer-related death worldwide. However, the prognosis for lung cancer patients is rather poor by lack of early marker detected. To investigate the mechanisms involved in tumorigenesis and metastasis would be necessary for patients' therapy. In our group's previous studies, it has been found that YWHAZ associates with TCF-4 and β-catenin in the nucleus, and YWHAZ-β-catenin-TCF-4 complex further promote EMT, cell invasion and migration in lung cancer. Also, previous studies reveal that YWHAZ-β-catenin-TCF-4 complex can regulate four candidate genes: ATF3, DMTF1, DUSP1 and PAK2.
PAK2, also known as p21-activated kinases 2, belongs to the PAKs family of serine/threonine kinases which can be activated by small G proteins: Rac and Cdc42. PAK2 is believed to promote tumorigenesis through regulatin cell proliferation, apoptosis and cytoskeleton remodeling. In order to investigate the upstream mechanism of PAK2, luciferase reporter and site-directed mutagenesis assay were used to check promoter activity. At first, PAK2 promoter region from -2077 to +59 was cloned. Then, three 5' terminal deleted fragment promoters were constructed. Luciferase assay results demonstrated that there is an important regulation region in -2077/-1547 fragment, and core promoter region of PAK2 is located at -478 bp to +59 bp. Furthermore, two TCF-4 binding motif sites -1467 and -1985 were predicted by TRANSFAC analysis. Both mutation vectors of TCF-4 binding site showed significantly lower luciferase activity compared with the wild type, indicating PAK2 may be activated by TCF-4. While PAK2 promoter region co-expressed with β-catenin or YWHAZ were analyzed, it is interesting to note the results show PAK2 may not be regulated by β-catenin but by YWHAZ. To investigate the function of PAK2 in lung cancer progression, stable cell lines were established. Overexpressing PAK2 in CL1-0 cell enhances cell colony formation and migration. In conclusion, PAK2 promoted cell motility by regulated of YWHAZ-TCF-4 interaction in lung cancer.
URI: http://hdl.handle.net/11455/97564
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-22起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7103055001-1.pdf3.09 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.