Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97565
標題: 液相層析質譜技術探討薑黃甲醇萃取物之分子組成及光化學特性
Investigation of the Molecular Compositions and Photochemical Properties of Turmeric Methanol Extracts by Liquid Chromatography - Mass Spectrometry
作者: 張芷瑜
Chih-Yu Chang
關鍵字: 薑黃;光化學反應;光敏分子;液相層析串聯質譜儀;天然物分析;Turmeric;Photochemistry;Photosensitizer;LC-MS/MS;Natural product analysis
引用: 1. Al-Nahain, A.; Jahan, R.; Rahmatullah, M., Zingiber officinale: A potential plant against rheumatoid arthritis. Arthritis 2014, 2014. 2. Jurenka, J. S., Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 2009, 14 (2), 141-53. 3. Wei, M.; Chu, C.; Wang, S.; Yan, J., Quantitative analysis of sesquiterpenes and comparison of three Curcuma wenyujin herbal medicines by micro matrix solid phase dispersion coupled with MEEKC. Electrophoresis 2018, 39 (8), 1119-1128. 4. Priyadarsini, K., The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19 (12), 20091. 5. Schneider, C.; Gordon, O. N.; Edwards, R. L.; Luis, P. B., Degradation of Curcumin: From Mechanism to Biological Implications. J Agric Food Chem 2015, 63 (35), 7606-14. 6. Teiten, M.-H.; Eifes, S.; Dicato, M.; Diederich, M., Curcumin―The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment. Toxins 2010, 2 (1), 128. 7. Hatcher, H.; Planalp, R.; Cho, J.; Torti, F. M.; Torti, S. V., Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci 2008, 65 (11), 1631-1652. 8. Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M. A.; Chin, D.; Wagner, A. E.; Rimbach, G., Curcumin—From Molecule to Biological Function. Angew Chem Int Ed 2012, 51 (22), 5308-5332. 9. Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B., Bioavailability of curcumin: problems and promises. Mol Pharm 2007, 4 (6), 807-18. 10. Esatbeyoglu, T.; Ulbrich, K.; Rehberg, C.; Rohn, S.; Rimbach, G., Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct 2015, 6 (3), 887-93. 11. Li, Y.; Zhang, T., Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett 346 (2), 197-205. 12. Kunnumakkara, A. B.; Diagaradjane, P.; Anand, P.; Harikumar, K. B.; Deorukhkar, A.; Gelovani, J.; Guha, S.; Krishnan, S.; Aggarwal, B. B., Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer 2009, 125 (9), 2187-97. 13. Ali, N. M.; Yeap, S. K.; Abu, N.; Lim, K. L.; Ky, H.; Pauzi, A. Z. M.; Ho, W. Y.; Tan, S. W.; Alan-Ong, H. K.; Zareen, S.; Alitheen, N. B.; Akhtar, M. N., Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int 2017, 17, 30. 14. Holzerová, E.; Prokisch, H., Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol 2015, 63, 16-20. 15. Singh, U.; Barik, A.; Singh, B. G.; Priyadarsini, K. I., Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship. Free Radic Res 2011, 45 (3), 317-25. 16. Carmona-Ramirez, I.; Santamaria, A.; Tobon-Velasco, J. C.; Orozco-Ibarra, M.; Gonzalez-Herrera, I. G.; Pedraza-Chaverri, J.; Maldonado, P. D., RETRACTED: Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. J Nutr Biochem 2013, 24 (1), 14-24. 17. Dall'Acqua, S.; Stocchero, M.; Boschiero, I.; Schiavon, M.; Golob, S.; Uddin, J.; Voinovich, D.; Mammi, S.; Schievano, E., New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach. Fitoterapia 2016, 109, 125-31. 18. Lantz, R. C.; Chen, G. J.; Solyom, A. M.; Jolad, S. D.; Timmermann, B. N., The effect of turmeric extracts on inflammatory mediator production. Phytomedicine 2005, 12 (6-7), 445-52. 19. Guimaraes, M. R.; Leite, F. R.; Spolidorio, L. C.; Kirkwood, K. L.; Rossa, C., Jr., Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch Oral Biol 2013, 58 (10), 1309-17. 20. Chandran, B.; Goel, A., A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res 2012, 26 (11), 1719-25. 21. Prasad, S.; Gupta, S. C.; Tyagi, A. K.; Aggarwal, B. B., Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 2014, 32 (6), 1053-64. 22. Schrader, C.; Schiborr, C.; Frank, J.; Rimbach, G., Curcumin induces paraoxonase 1 in cultured hepatocytes in vitro but not in mouse liver in vivo. Br J Nutr 2011, 105 (2), 167-70. 23. Sharma, S.; Ying, Z.; Gomez-Pinilla, F., A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol 2010, 226 (1), 191-9. 24. Rafii, M. S.; Aisen, P. S., Recent developments in Alzheimer's disease therapeutics. BMC Med 2009, 7, 7. 25. Mishra, S.; Palanivelu, K., The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann Indian Acad Neurol 2008, 11 (1), 13-9. 26. Yuliani, S.; Mustofa; Partadiredja, G., Turmeric (Curcuma longa L.) extract may prevent the deterioration of spatial memory and the deficit of estimated total number of hippocampal pyramidal cells of trimethyltin-exposed rats. Drug Chem Toxicol 2018, 41 (1), 62-71. 27. Park, B. S.; Kim, J. G.; Kim, M. R.; Lee, S. E.; Takeoka, G. R.; Oh, K. B.; Kim, J. H., Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J Agric Food Chem 2005, 53 (23), 9005-9. 28. Packiavathy, I. A.; Priya, S.; Pandian, S. K.; Ravi, A. V., Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chem 2014, 148, 453-60. 29. Khalafalla, R. E.; Muller, U.; Shahiduzzaman, M.; Dyachenko, V.; Desouky, A. Y.; Alber, G.; Daugschies, A., Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol Res 2011, 108 (4), 879-86. 30. Mary, C. P. V.; Vijayakumar, S.; Shankar, R., Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach. J Mol Graph Model 2018, 79, 1-14. 31. Zhu, X. Q.; Sun, M.; Zhu, F. P.; Ding, T. T.; Zhai, Y. J.; Zhai, G. X., [Preparation and characterization of curcumin polybutylcyanoacrylate nanoparticles]. Zhong Yao Cai 2010, 33 (5), 797-801. 32. Mondal, S.; Ghosh, S.; Moulik, S. P., Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluorescence spectral study. J Photochem Photobiol B 2016, 158, 212-8. 33. Kuo, P.-C.; Cherng, C.-Y.; Jeng, J.-F.; Damu, A. G.; Teng, C.-M.; Lee, E.-J.; Wu, T.-S., Isolation of a Natural Antioxidant, Dehydrozingerone from Zingiber officinale and Synthesis of Its Analogues for Recognition of Effective Antioxidant and Antityrosinase Agents. Arch Pharm Res 2005, 28 (5), 518-528. 34. Kumar, N.; Pruthi, V., Potential applications of ferulic acid from natural sources. Biotechnol Rep (Amst) 2014, 4, 86-93. 35. Akihisa, T.; Yasukawa, K.; Yamaura, M.; Ukiya, M.; Kimura, Y.; Shimizu, N.; Arai, K., Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 2000, 48 (6), 2313-9. 36. Nadal, J. M.; Gomes, M. L.; Borsato, D. M.; Almeida, M. A.; Barboza, F. M.; Zawadzki, S. F.; Farago, P. V.; Zanin, S. M., Spray-dried solid dispersions containing ferulic acid: comparative analysis of three carriers, in vitro dissolution, antioxidant potential and in vivo anti-platelet effect. Drug Dev Ind Pharm 2016, 42 (11), 1813-24. 37. Hudson, E. A.; Dinh, P. A.; Kokubun, T.; Simmonds, M. S.; Gescher, A., Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 2000, 9 (11), 1163-70. 38. Gordon, O. N.; Schneider, C., Vanillin and ferulic acid: not the major degradation products of curcumin. Trends Mol Med 2012, 18 (7), 361-3; author reply 363-4. 39. Osorio, A. A.; Munoz, A.; Torres-Romero, D.; Bedoya, L. M.; Perestelo, N. R.; Jimenez, I. A.; Alcami, J.; Bazzocchi, I. L., Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-kB and Sp1 dependent transcription. Eur J Med Chem 2012, 52, 295-303. 40. Herebian, D.; Choi, J. H.; Abd El-Aty, A. M.; Shim, J. H.; Spiteller, M., Metabolite analysis in Curcuma domestica using various GC-MS and LC-MS separation and detection techniques. Biomed Chromatogr 2009, 23 (9), 951-65. 41. Nishiyama, T.; Mae, T.; Kishida, H.; Tsukagawa, M.; Mimaki, Y.; Kuroda, M.; Sashida, Y.; Takahashi, K.; Kawada, T.; Nakagawa, K.; Kitahara, M., Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 2005, 53 (4), 959-63. 42. Qiao, X.; Lin, X. H.; Ji, S.; Zhang, Z. X.; Bo, T.; Guo, D. A.; Ye, M., Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study. Anal Chem 2016, 88 (1), 703-10. 43. Beeler, A. B., Introduction: Photochemistry in Organic Synthesis. Chem Rev 2016, 116 (17), 9629-30. 44. Hoffmann, N., Photochemical reactions as key steps in organic synthesis. Chem Rev 2008, 108 (3), 1052-103. 45. Fujioka, T.; Takeuchi, H.; Tanaka, H.; Nghiem, L. D.; Ishida, K. P.; Kodamatani, H., A rapid and reliable technique for N-nitrosodimethylamine analysis in reclaimed water by HPLC-photochemical reaction-chemiluminescence. Chemosphere 2016, 161, 104-111. 46. Yamada, Y.; Tamura, H.; Takeda, D., Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices. J Chem Phys 2011, 134 (10), 104302. 47. Mendieta-Moreno, J. I.; Trabada, D. G.; Mendieta, J.; Lewis, J. P.; Gomez-Puertas, P.; Ortega, J., Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer. J Phys Chem Lett 2016, 7 (21), 4391-4397. 48. Cai, Q.; Hu, J., Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. Water Res 2018, 140, 251-260. 49. Tan, B.; Ye, X.; Li, Y.; Ma, X.; Wang, Y.; Ye, J., Defective Anatase TiO2-x Mesocrystals Growth In Situ on g-C3N4 Nanosheets: Construction of 3D/2D Z-Scheme Heterostructure for Highly Efficient Visible Light Photocatalysis. Chemistry 2018. 50. Kumar, S.; Verma, A.; Pal, S.; Sinha, I., Curcumin-Functionalized Ag/Ag2 O Nanocomposites: Efficient Visible-Light Z-scheme Photocatalysts. Photochem Photobiol 2018. 51. Yousif, E.; Haddad, R., Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2013, 2, 398. 52. Ji, Y.; Yang, Y.; Zhou, L.; Wang, L.; Lu, J.; Ferronato, C.; Chovelon, J. M., Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes. Water Res 2018, 133, 299-309. 53. Wan, D.; Chen, Y.; Su, J.; Liu, L.; Zuo, Y., Ultraviolet absorption redshift induced direct photodegradation of halogenated parabens under simulated sunlight. Water Res 2018, 142, 46-54. 54. Emerson, J. F.; Abbaszadeh, Y.; Lo, J. N.; Tsinas, Z.; Pettersson, J.; Ward, P.; Al-Sheikhly, M. I., Sterilizing photocurable materials by irradiation: preserving UV-curing properties of photopolymers following E-beam, gamma, or X-ray exposure. J Mater Sci Mater Med 2017, 28 (12), 185. 55. Palaganas, N. B.; Mangadlao, J. D.; de Leon, A. C. C.; Palaganas, J. O.; Pangilinan, K. D.; Lee, Y. J.; Advincula, R. C., 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Appl Mater Interfaces 2017, 9 (39), 34314-34324. 56. Liang, J. Y.; Yuann, J. M.; Cheng, C. W.; Jian, H. L.; Lin, C. C.; Chen, L. Y., Blue light induced free radicals from riboflavin on E. coli DNA damage. J Photochem Photobiol B 2013, 119, 60-4. 57. Hingorani, K.; Pace, R.; Whitney, S.; Murray, J. W.; Smith, P.; Cheah, M. H.; Wydrzynski, T.; Hillier, W., Photo-oxidation of tyrosine in a bio-engineered bacterioferritin 'reaction centre'-a protein model for artificial photosynthesis. Biochim Biophys Acta 2014, 1837 (10), 1821-34. 58. Agathangelou, D.; Orozco-Gonzalez, Y.; Del Carmen Marin, M.; Roy, P. P.; Brazard, J.; Kandori, H.; Jung, K. H.; Leonard, J.; Buckup, T.; Ferre, N.; Olivucci, M.; Haacke, S., Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Faraday Discuss 2018, 207 (0), 55-75. 59. Salta, J.; Benhamou, R. I.; Herzog, I. M.; Fridman, M., Tuning the Effects of Bacterial Membrane Permeability through Photo-Isomerization of Antimicrobial Cationic Amphiphiles. Chemistry 2017, 23 (52), 12724-12728. 60. Zhang, S.; Sun, H.; Wang, L.; Liu, Y.; Chen, H.; Li, Q.; Guan, A.; Liu, M.; Tang, Y., Real-time monitoring of DNA G-quadruplexes in living cells with a small-molecule fluorescent probe. Nucleic Acids Res 2018. 61. Tonello, L.; Gashi, B.; Scuotto, A.; Cappello, G.; Cocchi, M.; Gabrielli, F.; Tuszynski, J. A., The gastrointestinal-brain axis in humans as an evolutionary advance of the root-leaf axis in plants: A hypothesis linking quantum effects of light on serotonin and auxin. J Integr Neurosci 2018, 17 (2), 227-237. 62. Cardona, T.; Shao, S.; Nixon, P. J., Enhancing photosynthesis in plants: the light reactions. Essays Biochem 2018, 62 (1), 85-94. 63. Liu, F.; Chang, H. C., Physiological links of circadian clock and biological clock of aging. Protein Cell 2017, 8 (7), 477-488. 64. Wang, Q.; Zuo, Z.; Wang, X.; Liu, Q.; Gu, L.; Oka, Y.; Lin, C., Beyond the photocycle-how cryptochromes regulate photoresponses in plants? Curr Opin Plant Biol 2018, 45 (Pt A), 120-126. 65. Gommers, C. M. M.; Hayes, S., A Spotlight on Photobiology. Plant Physiol 2018, 177 (2), 437-438. 66. Nassan, H.; Dawe, R. S.; Moseley, H.; Ibbotson, S. H., A review of photodiagnostic investigations over 26 years: experience of the National Scottish Photobiology Service (1989-2015). J R Coll Physicians Edinb 2017, 47 (4), 345-350. 67. Harada, K.; Murayama, Y.; Kubo, H.; Matsuo, H.; Morimura, R.; Ikoma, H.; Fujiwara, H.; Okamoto, K.; Tanaka, T.; Otsuji, E., Photodynamic diagnosis of peritoneal metastasis in human pancreatic cancer using 5-aminolevulinic acid during staging laparoscopy. Oncol Lett 2018, 16 (1), 821-828. 68. Lee, Y. J.; Rahman, M. M.; Abd El-Aty, A. M.; Choi, J. H.; Chung, H. S.; Kim, S. W.; Abdel-Aty, A. M.; Shin, H. C.; Shim, J. H., Detection of three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QuEChERS method and liquid chromatography-tandem mass spectrometry. Food Chem 2016, 210, 442-50. 69. Moan, J.; Peng, Q., An outline of the hundred-year history of PDT. Anticancer Res 2003, 23 (5A), 3591-600. 70. Dougherty, T. J.; Grindey, G. B.; Fiel, R.; Weishaupt, K. R.; Boyle, D. G., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 1975, 55 (1), 115-21. 71. Gupta, A. K.; Paquet, M.; Villanueva, E.; Brintnell, W., Interventions for actinic keratoses. Cochrane Database Syst Rev 2012, 12, CD004415. 72. Patel, G.; Armstrong, A. W.; Eisen, D. B., Efficacy of photodynamic therapy vs other interventions in randomized clinical trials for the treatment of actinic keratoses: a systematic review and meta-analysis. JAMA Dermatol 2014, 150 (12), 1281-8. 73. Sakamoto, F. H.; Torezan, L.; Anderson, R. R., Photodynamic therapy for acne vulgaris: a critical review from basics to clinical practice: part II. Understanding parameters for acne treatment with photodynamic therapy. J Am Acad Dermatol 2010, 63 (2), 195-211; quiz 211-2. 74. Surdel, M. C.; Horvath, D. J., Jr.; Lojek, L. J.; Fullen, A. R.; Simpson, J.; Dutter, B. F.; Salleng, K. J.; Ford, J. B.; Jenkins, J. L.; Nagarajan, R.; Teixeira, P. L.; Albertolle, M.; Georgiev, I. S.; Jansen, E. D.; Sulikowski, G. A.; Lacy, D. B.; Dailey, H. A.; Skaar, E. P., Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 2017, 114 (32), E6652-E6659. 75. Li, X.; Guo, H.; Tian, Q.; Zheng, G.; Hu, Y.; Fu, Y.; Tan, H., Effects of 5-aminolevulinic acid-mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res 2013, 184 (2), 1013-21. 76. Schroeter, C. A.; Pleunis, J.; van Nispen tot Pannerden, C.; Reineke, T.; Neumann, H. A., Photodynamic therapy: new treatment for therapy-resistant plantar warts. Dermatol Surg 2005, 31 (1), 71-5. 77. Ouyang, G.; Xiong, L.; Liu, Z.; Lam, B.; Bui, B.; Ma, L.; Chen, X.; Zhou, P.; Wang, K.; Zhang, Z.; Huang, H.; Miao, X.; Chen, W.; Wen, Y., Inhibition of autophagy potentiates the apoptosis-inducing effects of photodynamic therapy on human colon cancer cells. Photodiagnosis Photodyn Ther 2018, 21, 396-403. 78. Yang, M. Y.; Chang, C. J.; Chen, L. Y., Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells. J Photochem Photobiol B 2017, 173, 325-332. 79. Yang, M. Y.; Chang, K. C.; Chen, L. Y.; Wang, P. C.; Chou, C. C.; Wu, Z. B.; Hu, A., Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii. J Photochem Photobiol B 2018, 180, 235-242. 80. Musani, A. I.; Veir, J. K.; Huang, Z.; Lei, T.; Groshong, S.; Worley, D., Photodynamic therapy via navigational bronchoscopy for peripheral lung cancer in dogs. Lasers Surg Med 2018. 81. Ding, Y. F.; Li, S.; Liang, L.; Huang, Q.; Yuwen, L.; Yang, W.; Wang, R.; Wang, L. H., Highly Biocompatible Chlorin e6-Loaded Chitosan Nanoparticles for Improved Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2018, 10 (12), 9980-9987. 82. Lin, W. S.; Chen, J. Y.; Wang, J. C.; Chen, L. Y.; Lin, C. H.; Hsieh, T. R.; Wang, M. F.; Fu, T. F.; Wang, P. Y., The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr) 2014, 36 (2), 689-703. 83. Zhao, Q.; Zhang, J. L.; Li, F., Application of Metabolomics in the Study of Natural Products. Nat Prod Bioprospect 2018. 84. Chen, L. Y.; Wu, J. Y.; Liang, J. Y., Using chromatography and mass spectrometry to monitor isomerization of catechin in alkaline aqueous with thermal processing. J. Food Process Pres 2017, 42 (1). 85. Nobakht, M. G. B. F., Application of metabolomics to preeclampsia diagnosis. Syst Biol Reprod Med 2018, 1-16. 86. Miyamoto, T.; Hirayama, A.; Sato, Y.; Koboyashi, T.; Katsuyama, E.; Kanagawa, H.; Fujie, A.; Morita, M.; Watanabe, R.; Tando, T.; Miyamoto, K.; Tsuji, T.; Funayama, A.; Soga, T.; Tomita, M.; Nakamura, M.; Matsumoto, M., Metabolomics-based profiles predictive of low bone mass in menopausal women. Bone Rep 2018, 9, 11-18. 87. Mesnage, R.; Biserni, M.; Balu, S.; Frainay, C.; Poupin, N.; Jourdan, F.; Wozniak, E.; Xenakis, T.; Mein, C. A.; Antoniou, M. N., Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126. Arch Toxicol 2018. 88. Xia, F.; Li, A.; Chai, Y.; Xiao, X.; Wan, J.; Li, P.; Wang, Y., UPLC/Q-TOFMS-Based Metabolomics Approach to Reveal the Protective Role of Other Herbs in An-Gong-Niu-Huang Wan Against the Hepatorenal Toxicity of Cinnabar and Realgar. Front Pharmacol 2018, 9, 618. 89. Jiang, J. L.; Jin, X. L.; Zhang, H.; Su, X.; Qiao, B.; Yuan, Y. J., Identification of antitumor constituents in curcuminoids from Curcuma longa L. based on the composition-activity relationship. J Pharm Biomed Anal 2012, 70, 664-70. 90. Yang, M. Y.; Chang, K. C.; Chen, L. Y.; Hu, A., Low-Dose Blue Light Irradiation Enhances the Antimicrobial Activities of Curcumin against Propionibacterium acnes. J Photochem Photobiol B 2018, 144. 91. Dovigo, L. N.; Pavarina, A. C.; Ribeiro, A. P.; Brunetti, I. L.; Costa, C. A.; Jacomassi, D. P.; Bagnato, V. S.; Kurachi, C., Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 2011, 87 (4), 895-903. 92. Andrade, M. C.; Ribeiro, A. P.; Dovigo, L. N.; Brunetti, I. L.; Giampaolo, E. T.; Bagnato, V. S.; Pavarina, A. C., Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol 2013, 58 (2), 200-10. 93. Buss, S.; Dobra, J.; Goerg, K.; Hoffmann, S.; Kippenberger, S.; Kaufmann, R.; Hofmann, M.; Bernd, A., Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS One 2013, 8 (11), e79748. 94. Hosseinzadeh, R.; Khorsandi, K., Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis Photodyn Ther 2017, 18, 284-294. 95. Dujic, J.; Kippenberger, S.; Ramirez-Bosca, A.; Diaz-Alperi, J.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A.; Hofmann, M., Curcumin in combination with visible light inhibits tumor growth in a xenograft tumor model. Int J Cancer 2009, 124 (6), 1422-8. 96. Tsai, W. H.; Yu, K. H.; Huang, Y. C.; Lee, C. I., EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. Int J Nanomedicine 2018, 13, 903-916. 97. Ha, S. K.; Moon, E.; Ju, M. S.; Kim, D. H.; Ryu, J. H.; Oh, M. S.; Kim, S. Y., 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 2012, 63 (2), 211-23. 98. Koo, H. J.; McDowell, E. T.; Ma, X.; Greer, K. A.; Kapteyn, J.; Xie, Z.; Descour, A.; Kim, H.; Yu, Y.; Kudrna, D.; Wing, R. A.; Soderlund, C. A.; Gang, D. R., Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Plant Biol 2013, 13, 27. 99. Chang, K. W.; Kuo, C. Y., 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct 2015, 6 (10), 3334-41. 100. Lee, J. O.; Kim, N.; Lee, H. J.; Moon, J. W.; Lee, S. K.; Kim, S. J.; Kim, J. K.; Park, S. H.; Kim, H. S., [6]-Gingerol Affects Glucose Metabolism by Dual Regulation via the AMPKalpha2-Mediated AS160-Rab5 Pathway and AMPK-Mediated Insulin Sensitizing Effects. J Cell Biochem 2015, 116 (7), 1401-10. 101. Jain, M.; Singh, A.; Singh, V.; Maurya, P.; Barthwal, M. K., Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation. J Cardiovasc Pharmacol Ther 2016, 21 (2), 187-200. 102. Kawamoto, Y.; Ueno, Y.; Nakahashi, E.; Obayashi, M.; Sugihara, K.; Qiao, S.; Iida, M.; Kumasaka, M. Y.; Yajima, I.; Goto, Y.; Ohgami, N.; Kato, M.; Takeda, K., Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. J Nutr Biochem 2016, 27, 112-22. 103. Ryu, M. J.; Chung, H. S., [10]-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells. In Vitro Cell Dev Biol Anim 2015, 51 (1), 92-101. 104. Sakurai, N.; Ara, T.; Kanaya, S.; Nakamura, Y.; Iijima, Y.; Enomoto, M.; Motegi, T.; Aoki, K.; Suzuki, H.; Shibata, D., An application of a relational database system for high-throughput prediction of elemental compositions from accurate mass values. Bioinformatics 2013, 29 (2), 290-1. 105. Nichols, K. K.; Ham, B. M.; Nichols, J. J.; Ziegler, C.; Green-Church, K. B., Identification of fatty acids and fatty acid amides in human meibomian gland secretions. Invest Ophthalmol Vis Sci 2007, 48 (1), 34-9. 106. Li, M. M.; Jiang, Z. E.; Song, L. Y.; Quan, Z. S.; Yu, H. L., Antidepressant and anxiolytic-like behavioral effects of erucamide, a bioactive fatty acid amide, involving the hypothalamus-pituitary-adrenal axis in mice. Neurosci Lett 2017, 640, 6-12. 107. Mitchell, C. A.; Davies, M. J.; Grounds, M. D.; McGeachie, J. K.; Crawford, G. J.; Hong, Y.; Chirila, T. V., Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of erucamide from a polymer matrix. J Biomater Appl 1996, 10 (3), 230-49. 108. Brito, A.; Ramirez, J. E.; Areche, C.; Sepulveda, B.; Simirgiotis, M. J., HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 2014, 19 (11), 17400-21. 109. Venigalla, M.; Gyengesi, E.; Munch, G., Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regen Res 2015, 10 (8), 1181-5. 110. Crasci, L.; Cardile, V.; Longhitano, G.; Nanfito, F.; Panico, A., Anti-degenerative effect of Apigenin, Luteolin and Quercetin on human keratinocyte and chondrocyte cultures: SAR evaluation. Drug Res (Stuttg) 2018, 68 (3), 132-138. 111. Kiraly, A. J.; Soliman, E.; Jenkins, A.; Van Dross, R. T., Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot Essent Fatty Acids 2016, 104, 44-53. 112. Zhang, Y.; Cao, Y.; Zhang, L.; Feng, C.; Zhou, G.; Wen, G., Apigenin inhibits C5a-induced proliferation of human nasopharyngeal carcinoma cells through down-regulation of C5aR. Biosci Rep 2018, 38 (3). 113. Chen, L.; Zhao, W., Apigenin protects against bleomycin-induced lung fibrosis in rats. Exp Ther Med 2016, 11 (1), 230-234. 114. Feng, Y.; Lu, Y.; Liu, D.; Zhang, W.; Liu, J.; Tang, H.; Zhu, Y., Apigenin-7-O-beta-d-(-6'-p-coumaroyl)-glucopyranoside pretreatment attenuates myocardial ischemia/reperfusion injury via activating AMPK signaling. Life Sci 2018, 203, 246-254. 115. Lin, Y.; Sun, H.; Dang, Y.; Li, Z., Isoliquiritigenin inhibits the proliferation and induces the differentiation of human glioma stem cells. Oncol Rep 2018, 39 (2), 687-694. 116. Zheng, W.; Tao, Z.; Cai, L.; Chen, C.; Zhang, C.; Wang, Q.; Ying, X.; Hu, W.; Chen, H., Chrysin Attenuates IL-1beta-Induced Expression of Inflammatory Mediators by Suppressing NF-kappaB in Human Osteoarthritis Chondrocytes. Inflammation 2017, 40 (4), 1143-1154. 117. Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H. S., Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018, 155, 889-904. 118. Brown, S. A.; Sampathkumar, S., The biosynthesis of isopimpinellin. Can J Biochem 1977, 55 (7), 686-92.
摘要: 
植物性天然物為近代開發治療慢性疾病新興藥物之首選,薑黃 (Curcuma longa.) 是傳統飲食及醫藥中常見的材料,近年來,更因為具有抗癌、抗發炎、抗氧化等多樣及顯著的生物活性,被藥理學與臨床醫學視為高度潛力之天然分子藥物來源。以可見光為基礎之光動力治療 (photodynamic therapy, PDT) 作為常規臨床療法之輔助治療手段而日漸受到重視,薑黃主要的生物活性成分 薑黃素 (curcumin) 對可見光敏感並容易被活化激發,為光動力治療應用中扮演光敏劑 (Photosensitizer) 的潛力角色,然而,薑黃素經光化學反應的產物與其相關反應機構至今尚未定論。根據文獻的整理回顧,天然薑黃的組成非常複雜,是否存在其他光敏物質做為光能量轉移媒介,或有不同的光化學反應路徑,目前也很少有研究進行評估。結果顯示,本研究之分析策略可快速篩選出關鍵光化學相關分子,伴隨著光降解與光聚合反應,除薑黃素外共有6個全新薑黃光化學產物產生,最後以碰撞引致裂解 (collision-induced dissociation, CID) 結果與文獻比對,進行分子鑑定及推論相關的光化學反應機構,結果可發現薑黃中有類黃酮分子與含氮脂肪酸等參與光化學反應,而薑黃甲醇萃取物經光化學反應後會產生大分子聚合物。本研究運用液相層析串聯質譜 (liquid chromatography-mass spectrometry, LC-MS) 技術開發未知天然物鑑定與分析手段,提升分子辨別率與偵測靈敏度,全面性觀察不同品種薑黃經藍光照射後甲醇萃取物之組成變化,進一步了解其相關光化學反應的產物與分子特性。利用不同萃取條件將薑黃進行分組,比較出不同薑黃化學組成之光反應前後差異。未來可望擴展薑黃於光動力治療、微生物失活的應用,提升薑黃相關分子藥物開發之安全性,也提供病理風險評估之分子指標做為控制與治療的參考。

Recently, the natural products from botanic sources are important materials for the development of molecular drugs for the treatment of chronic diseases. Turmeric (Curcuma longa.) has many biological activities, such as anti-cancer, anti-oxidation, anti-inflammation and bacterial inhibition. Therefore, turmeric is also considered as the potential medicines in traditional diets and clinical pharmacology. In recent years, the photodynamic therapy (PDT) with visible light (non-ultraviolet, non-UV) has attracted increasing as an alternative therapy off the clinical normal therapies. Curcumin is the majority of Turmeric natural products and has a property to be excited by the visible (blue) light. Therefore, the curcumin is potential to play a photosensitizer in PDT. However, the product of curcumin photochemical reaction and its related reaction mechanism have not yet been understood. According to our review of the literatures, the composition of natural turmeric is very complicated, there are currently few studies to evaluate whether other photosensitive substances as the transfer media with irradiation energy, or various pathways or mechanisms in the photochemical reactions. Therefore, the liquid chromatography-mass spectrometer (LC-MS) technique was used to develop analytical strategy to screen and identify the unknown natural products in this study. By the way, our protocol also could improve the detection sensitivity and monitor the comprehensive differences of turmeric methanol extracts. After irradiations by the blue light, the changes of molecular composition in turmeric can be determined to further identify the molecular characteristics of the products in photochemical reactions. Turmeric compositions were grouped by various extraction conditions, and the differences were compared for the molecular changes in the turmeric compositions under the light irradiation. The results show that the analytical strategy of this study can quickly screen photosensitive molecule, and accompanied by photo-degradation and photo-polymerization, total of 6 new turmeric photochemical products are produced. Furthermore, the results from 2nd MS (collision-induced dissociation, CID) were compared with the literature to identify the relevant molecules. As a result, it was found that flavonoid and nitrogen-containing fatty acids participate in turmeric photochemical reactions. macromolecular polymers are produced by photochemical reaction of turmeric methanol extract. Our results of molecular screening and photochemical reaction mechanisms were expected to turmeric applications on photodynamic therapy, microbial inactivation, the molecular drug safety, and enhancements of the molecular indicator in pathological conditions.
URI: http://hdl.handle.net/11455/97565
Rights: 同意授權瀏覽/列印電子全文服務,2020-08-27起公開。
Appears in Collections:分子生物學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105055015-1.pdf4.04 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.