Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97640
標題: S,N,O-希夫鹼三牙配位基鎳及鋅錯合物之合成、結構鑑定及其於環氧化物與二氧化碳反應之催化研究
Synthesis and Characterization of S,N,O-Tridentate Schiff Base Nickel and Zinc Complexes and Their Catalytic Studies in the Reaction of Epoxides with Carbon Dioxide
作者: 王姵今
Pei-Chin Wang
關鍵字: 希夫鹼;二氧化碳;催化;環氧化物;Schiff Base;Carbon Dioxide;Catalyst;Epoxides
引用: 1.Forum, W. E. The New Plastics Economy Rethinking the future of plastics 2016.. 2.(1)http://test.clweb.com.tw/tnepb_recycle/mode02.asp?m=201304161201181&t=sub (2)http://www.commonhealth.com.tw/article/article.action?nid=75773 (3) https://www.iyiou.com/p/37048 (4) https://whatsyourimpact.org/global-warming (5)http://www.slate.com/articles/news_and_politics/interrogation/2017/11/howglobal_warming_is_like_nuclear_war.html (6) https://kids.britannica.com/kids/article/global-warming/353185. 3.http://www.bioplas.com.au/news/2015/5/25/european-parliament-votes-to-halve-non-biodegradable-plastic-bags 4.Gupta, A.; Kumar, V., New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. European polymer journal 2007, 43 (10), 4053-4074. 5.Nampoothiri, K. M.; Nair, N. R.; John, R. P., An overview of the recent developments in polylactide (PLA) research. Bioresource technology 2010, 101 (22), 8493-8501. 6.http://blog.xuite.net/edesk1469/23693392/132408128 7.http://www.shinexinyu.com/tw/pro_list/index/orderby/hits/class/52/class_sec/154 8.www.hbliantuo.com 9.www.rwdmall.com 10.Bogaert, J. C.; Coszach, P. In Poly (lactic acids): a potential solution to plastic waste dilemma, Macromolecular symposia, Wiley Online Library: 2000; pp 287-303. 11.Vert, M., Lactide polymerization faced with therapeutic application requirements. Macromolecular Symposia 2000, 153 (1), 333-342. 12.Jain, R. A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21 (23), 2475-2490. 13.https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks 14.Saidi, M.; Heidarinejad, S.; Rahimpour, H. R.; Talaghat, M. R.; Rahimpour, M. R., Mathematical modeling of carbon dioxide removal using amine-promoted hot potassium carbonate in a hollow fiber membrane contactor. Journal of Natural Gas Science and Engineering 2014, 18, 274-285. 15.Wilkinson, M.; Haszeldine, R. S.; Fallick, A. E.; Odling, N.; Stoker, S. J.; Gatliff, R. W., CO2–mineral reaction in a natural analogue for CO2 storage—implications for modeling. Journal of Sedimentary Research 2009, 79 (7), 486-494. 16.行政院環境保護署委託報告,蔣本基教授團隊,計畫編號: EPA-102-FA01-03-D071 17.Olah, G. A.; Prakash, G. S.; Goeppert, A., Anthropogenic chemical carbon cycle for a sustainable future. Journal of the American Chemical Society 2011, 133 (33), 12881-12898. 18.Hao, C.; Wang, S.; Li, M.; Kang, L.; Ma, X., Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis today 2011, 160 (1), 184-190. 19.Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W., Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie International Edition 2016, 55 (26), 7296-7343. 20.U.S. Food and Drug Administration, Draft Assessment of Bisphenol A for Use in Food Contact Applications, 14 August 2008. 21.Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B., Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coordination Chemistry Reviews 2011, 255 (13-14), 1460-1479. 22.Vandenberg, L. N.; Hunt, P. A.; Myers, J. P.; vom Saal, F. S., Human exposures to bisphenol A: mismatches between data and assumptions. Reviews on environmental health 2013, 28 (1), 37-58. 23.Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K., Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chemical Communications 2015, 51 (30), 6459-6479. 24.Kember, M. R.; Buchard, A.; Williams, C. K., Catalysts for CO 2/epoxide copolymerisation. Chemical Communications 2011, 47 (1), 141-163. 25.Guerin, W.; Diallo, A. K.; Kirilov, E.; Helou, M.; Slawinski, M.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S. M., Enantiopure isotactic PCHC synthesized by ring-opening polymerization of cyclohexene carbonate. Macromolecules 2014, 47 (13), 4230-4235. 26.(1) http://www.szhytckj.com/c675.html (2) https://zhuanlan.zhihu.com/p/29707038 (3) http://ochiai.yz.yamagata-u.ac.jp/research/researchCO2e.html 27.Inoue, S.; Koinuma, H.; Tsuruta, T., Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part C: Polymer Letters 1969, 7 (4), 287-292. 28.Aida, T.; Inoue, S., Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato) aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. Journal of the American Chemical Society 1983, 105 (5), 1304-1309. 29.Chatterjee, C.; Chisholm, M. H.; El-Khaldy, A.; McIntosh, R. D.; Miller, J. T.; Wu, T., Influence of the metal (Al, Cr, and Co) and substituents of the porphyrin in controlling reactions involved in copolymerization of propylene oxide and carbon dioxide by porphyrin metal (III) complexes. 3. Cobalt chemistry. Inorganic chemistry 2013, 52 (8), 4547-4553. 30.Darensbourg, D. J.; Holtcamp, M. W., Catalytic activity of zinc (II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 1995, 28 (22), 7577-7579. 31.Cheng, M.; Lobkovsky, E. B.; Coates, G. W., Catalytic reactions involving C1 feedstocks: new high-activity Zn (II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. Journal of the American Chemical Society 1998, 120 (42), 11018-11019. 32.Eberhardt, R.; Allmendinger, M.; Luinstra, G. A.; Rieger, B., The ethylsulfinate ligand: a highly efficient initiating group for the zinc β-diiminate catalyzed copolymerization reaction of CO2 and epoxides. Organometallics 2003, 22 (1), 211-214. 33.Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R., Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Accounts of chemical research 2004, 37 (11), 836-844. 34.Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K., A bimetallic iron(III) catalyst for CO2/epoxide coupling. Chem Commun (Camb) 2011, 47 (1), 212-4. 35.Sheng, X.; Qiao, L.; Qin, Y.; Wang, X.; Wang, F., Highly efficient and quantitative synthesis of a cyclic carbonate by iron complex catalysts. Polyhedron 2014, 74, 129-133. 36.North, M.; Quek, S. C.; Pridmore, N. E.; Whitwood, A. C.; Wu, X., Aluminum (salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling. ACS Catalysis 2015, 5 (6), 3398-3402. 37.Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C., Ring-opening polymerization of lactides initiated by zinc alkoxides derived from NNO-tridentate ligands. Macromolecules 2006, 39 (11), 3745-3752. 38.Hung, W.-C.; Lin, C.-C., Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate schiff-base ligands. Inorganic chemistry 2008, 48 (2), 728-734. 39.Tsai, C.-Y.; Huang, B.-H.; Hsiao, M.-W.; Lin, C.-C.; Ko, B.-T., Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide. Inorganic chemistry 2014, 53 (10), 5109-5116. 40.Tsai, C.-Y.; Cheng, F.-Y.; Lu, K.-Y.; Wu, J.-T.; Huang, B.-H.; Chen, W.-A.; Lin, C.-C.; Ko, B.-T., Dinuclear and trinuclear nickel complexes as effective catalysts for alternating copolymerization on carbon dioxide and cyclohexene oxide. Inorganic chemistry 2016, 55 (16), 7843-7851. 41.105年黃敏嘉碩士論文 42.Jiang, J.; Gandara, F.; Zhang, Y. B.; Na, K.; Yaghi, O. M.; Klemperer, W. G., Superacidity in sulfated metal-organic framework-808. J Am Chem Soc 2014, 136 (37), 12844-7. 43.Knight, P. D.; O'Shaughnessy, P. N.; Munslow, I. J.; Kimberley, B. S.; Scott, P., Biaryl-bridged Schiff base complexes of zirconium alkyls: synthesis structure and stability. Journal of Organometallic Chemistry 2003, 683 (1), 103-113. 44.Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W., Synthesis of allyl-terminated syndiotactic polypropylene: macromonomers for the synthesis of branched polyolefins. Macromolecules 2005, 38 (15), 6259-6268.
摘要: 
本研究探討S,N,O希夫鹼配位基前驅物與醋酸鎳及醋酸鋅之反應,合成一系列含三牙配位基之金屬錯合物 (1-9),並探討在配位基(L1H-L6H) 的苯酚基之電子效應及立體障礙對錯化合物活性之影響。錯合物經由元素分析、紅外線光譜儀與液相層析串聯質譜確定其結構組成,並利用紫外光/可見光光譜和熔點測定儀探討其物理性質。其中,錯合物1、2、4、7經X-光單晶繞射儀鑑定發現有四種不同構型,分別為五核六配位鎳錯合物1、三核六配位鎳錯合物2b、單核六配位鎳錯合物4及雙核五配位鋅錯合物7。在助催化劑 (Bu4NCl) 存在,鎳錯合物2及鋅錯合物8對環氧環己烷與二氧化碳之共聚合反應均具有良好之催化活性及小分子環碳酸酯選擇性。

A series of novel nickel and zinc acetate complexes (1-9) supported by S,N,O-tridentate Schiff-base ancillary ligands bearing substituents with electronic or steric effect have been synthesized. The composition of complexes have been characterized by elemental analysis, FT-IR and LC/MS spectroscopy. Their physical properties were investigated using UV/Vis spectroscopy and a melting point analyzer. X-ray diffraction studies of 1、2b、4 and 7 indicate that these complexes have a variety of geometry such as pentanuclear five-coordinated nickel center, trinuclear six-coordinated nickel center, mononuclear six-coordinated nickel center and binuclear five-coordinated zinc center. In the presence of Bu4NCl as a cocatalyst, nickel complex 2 and zinc complex 8 show efficient activity and high selectivity in the reaction of carbon dioxide with cyclohexene oxide yielding high yield of cis-CHC.
URI: http://hdl.handle.net/11455/97640
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-28起公開。
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.