Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97674
標題: 以擴散波模式進行漫地流之水理分析
Hydraulic Analysis of Overland Flow by a Diffusion Wave Model
作者: 王鼎佑
Ding-You Wang
關鍵字: 擴散波方程式;漫地流;質量守恆定律;時變性降雨;Diffusion wave equation;Overland flow;Law of mass conservation;Time-varying rainfall
引用: 1. 石棟鑫(2001),「台灣地區颱風與降雨型態之分析研究」,碩士論文,中央大學土木工程研究所,中壢。 2. 吳宏義(2013),「降雨強度對屋頂排水量影響之研究」,碩士論文,中國科技大學建築研究所,文山。 3. 黃靖倫(2015),「海岸地區潮汐與降雨和土壤差異對非拘限含水層的地下水變化」,碩士論文,中興大學水土保持研究所,台中。 4. Bajracharya K., Barry D. A. (1997), 'Accuracy criteria for linearised diffusion wave flood routing' Journal of Hydrology, 195(1-4):200-217. 5. Bell, N. C., Wheater H .S. and Johnston P. M. (1989), 'Evaluation of overland flow models using laboratory catchment data II. Parameter identification of physically based (kinematic wave) models' Hydrological Sciences Journal, 34(3): 289-317. 6. Brutsaert W. (2005), Hydrology: An Introduction, Cambridge Univ. Press, New York. 7. Cappelaere B. (1997), 'Accurate diffusion wave routing' Journal of Hydraulic Engineering, 123(3): 174-181. 8. Chow V. T. (1959), Open Channel Hydraulics, McGraw-Hill, New York. 9. De Lima J. L. M. P., Singh V. P. (2002), 'The influence of the pattern of moving rainstorms on overland flow' Advances in Water Resources, 25(7):817-828. 10. Fan P., Li J. C. (2002), 'Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow' Advances in Water Resources, 29:1000-1019. 11. Hayami S. (1951), 'On the propagation of flood waves' Bulletin No. 1, Disaster Prevention Research Institute, Kyoto University, Japan , December 1951. 12. Henderson F. M. (1966), Open Channel Flow, Macmillan, New York. 13. Jain M. K., Singh V. P. (2005), 'DEM-based modelling of surface runoff using diffusion wave equation' Journal of Hydrology, 302(1-4): 107-126. 14. Kazezyılmaz-Alhan C. M. (2012), 'An improved solution for diffusion waves to overland flow' Applied Mathematical Modelling, 36(9): 4165-4172. 15. Kazezyılmaz-Alhan C. M., Medina M. A. (2007), 'Kinematic and Diffusion Waves: analytical and numerical solutions to Overland and Channel Flow' Journal of Hydrologic Engineering, 133(2): 217-228. 16. Nazari B. (2017), 'Toward high-resolution flood forecasting for large urban areas - new solutions for 1D routing', Thesis of doctor, The University of Texas at Arlington, Arlington, May 2017. 17. Özisik, M.N. (1968), Boundary value problems of heat conduction, Dover Publications, INC., New York. 18. Ponce, V.M. (1989), Engineering hydrology, principles and practices. Prentice-Hall, Englewood Cliffs, N.J. 19. Ponce, V.M., Klabunde A.C. (1999), 'Parking lot storage modeling using diffusion waves' Journal of Hydrologic Engineering, 4(4): 371-376. 20. Shen B., Shen J. (1990), 'Experimental and numerical study of overland flow induced by rainfall on the loess slope' Hydraulic Engineering, Published by American Society of Civil Engineers, New York., 151-156. 21. Wallach, R., Grigorin G. and Rivlin J. (1997), 'The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth' Journal of Hydrology, 200(1-4): 243-259. 22. Wang, L., Wu J. Q., Elliot W. J., Fiedler F. R. and Lapin S. (2014), 'Linear diffusion-wave channel routing using a discrete Hayami convolution method' Journal of Hydrology, 509(1-4): 282-294. 23. Yang, Y., Endreny T. A. (2013), 'Watershed hydrograph model based on surface flow diffusion' Water Resources Research, 49(1): 507-516. 24. Yang, Y., Endreny T. A. and Nowak D. J. (2015), 'Simulating the effect of flow path roughness to examine how green infrastructure restores urban runoff timing and magnitude' Urban Forestry & Urban Greening, 14(2): 361-367. 25. Yen, B. C., Tsai C. W. –S. (2001), 'On noninertia wave versus diffusion wave in flood routing' Journal of Hydrology, 244(1-4): 97-104. 26. Zhao, P. Y., Xu X. X., Liu P. L., Chen T. L., Liao X. and Li. B.(2009), 'Infiltration Characteristics Under Different Land Uses in the Loess Hilly Area' Bulletin of Soil and Water Conservation, 29(1): 40-44.
摘要: 
近年來台灣各地陸續開發山坡地,大量使用水泥、瀝青…等材質覆蓋原地表,不僅造成地表摩擦力和透水能力降低,且導致漫地流流速和逕流量增加,進而使得洪水發生的頻率與規模增加,所以預測降雨造成漫地流流況的變化成為一項重要的課題。
本研究欲模擬不同降雨型態下之漫地流流況差異,以擴散波模式之理論模擬,引用前人研究之擴散波方程式為控制方程式搭配廣義積分轉換法獲得漫地流水深之解析解。此外,由於前人擴散波應用之研究所採用參數值多僅由經驗判斷,本研究提出以質量守恆定律進行參數校正的方法加強整體模擬結果之合理性。於相同案例中,相較於前人研究所採用的參數可減少大約20%的質量誤差,大幅改善通過坡面各位置之漫地流流況變化模擬結果。
本文於均勻降雨之案例中證實持續降雨情況下,流況會趨於穩定至不再隨時間變化之論點。由時變性降雨分析之結果可得知後峰型降雨之洪峰水深、洪峰流量最大,其次為擬後峰型降雨;而中峰型降雨之漫地流平均流速最大,其次為擬前峰型降雨;雙峰型降雨之洪峰水深、洪峰流量及平均流速均為本研究之六種雨型中最小。研究之假設條件可能使得研究成果相較於真實物理現象略顯差異,但仍希望此研究能為集水區管理工作提供參考,略盡微薄之力。

In recent years, various hillslopes in Taiwan have been developed and large amounts of materials such as cement, asphalt, etc. were used to cover the original ground surface. This not only causes the decrease in surface friction and permeability, but also increases the velocity and runoff of overland flow, which in turn increases the frequency and scale of flooding. For this reason, the prediction of change of the overland flow caused by rainfall has become an important issue.
The purpose of this study is to simulate the differences in overland flow under different rainfall patterns. Simulations are based on the theory of the diffusion wave model. The diffusion wave equations studied by previous studies are used to derive the analytical solution to the water depth of overland flow by using the generalized integral transform technique. In addition, because the previous studies on the diffusion wave use a large number of parameters only by empirical judgement, this study proposes an algorithm of parameter correction using the law of mass conservation to enhance the rationality of the overall simulation results. In the same case, compared with the parameters used by previous studies, about 20% mass shift can be reduced, and the simulation results of the overland flow through each location along the slope can be greatly improved.
In the case of uniform rainfall, this study confirms that under a continuous rainfall event, the flow will reach a stable state and no longer change over time. From the results of time-varying rainfall analysis, it can be known that the peak at last section rainfall has the maximum peak depth and peak discharge. It followed by the peak at the third quarter section rainfall. However, the average overland flow velocity of the peak at center rainfall is the largest, followed by the peak at the first quarter section rainfall. The peak depth, peak flow, and average flow rate of the double peak rainfall are the smallest of all rainfall patterns. The assumptions of this study may make the research results slightly different from the actual physical phenomena, but we still hope that this study can provide a reference for watershed management work.
URI: http://hdl.handle.net/11455/97674
Rights: 同意授權瀏覽/列印電子全文服務,2020-08-02起公開。
Appears in Collections:水土保持學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105042208-1.pdf2.09 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.