Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorYuan-Chieh Chengen_US
dc.identifier.citationBeyenbach, K. W., Wieczorek, H. (2006). The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. Journal of Experimental Biology, 209, 577-589. Blondeau-Bidet, E., Bossus, M., Maugars, G., Farcy, E., Lignot, J. H., Lorin-Nebel, C. (2016). Molecular characterization and expression of Na+/K+-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. Fish Physiology and Biochemistry, 42, 1647-1664. Bozinovic, F., Veloso, C., Rosenmann, M. (1988). Cambios del tracto digestivo de Abrothrix andinus (Cricetidae): efecto de la calidad de dieta y requerimientos de energía. Revista Chilena de Historia Natural, 61, 245-251. Bretscher, A., Osborn, M., Wehland, J., Weber, K. (1981). Villin associates with specific microfilamentous structures as seen by immunofluorescence microscopy on tissue sections and cells microinjected with villin. Experimental Cell Research, 135, 213-219. Bretscher, A., Weber, K. (1979). Villin: the major microfilament-associated protein of the intestinal microvillus. Proceedings of the National Academy of Sciences, 76, 2321-2325. Bucking, C., Fitzpatrick, J. L., Nadella, S. R., McGaw, I. J., Wood, C. M. (2011). Assimilation of water and dietary ions by the gastrointestinal tract during digestion in seawater-acclimated rainbow trout. Journal of Comparative Physiology B, 181, 615-630. Bucking, C., Schulte, P. M. (2012). Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 161, 379-387. Bucking, C., Wood, C. M. (2012). Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout. Journal of Comparative Physiology B, 182, 341-350. Buddington, R. K., Krogdahl, A., Bakke-McKellep, A. M. (1997). The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiologica Scandinavica. Supplementum, 638, 67-80. Bui, P., Kelly, S. P. (2014). Claudin-6,-10d, and-10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis. Journal of Experimental Biology, 217, 1758-1767. Buret, A., Hardin, J. A., Olson, M. E., Gall, D. G. (1992). Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology, 103, 506-513. Buret, A., Hardin, J., Olson, M. E., Gall, D. G. (1993). Adaptation of the small intestine in desert-dwelling animals: morphology, ultrastructure and electrolyte transport in the jejunum of rabbits, rats, gerbils and sand rats. Comparative Biochemistry and Physiology Part A: Physiology, 105, 157-163. Carbone, C., Teacher, A., Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biol, 5, e22. Cervantes, S. (2013). Cellular and molecular mechanisms of intestinal elongation in mammals: The long and short of it. Histol. Histopathol, 28, 427-436. Chew, S. F., Tng, Y. Y., Wee, N. L., Wilson, J. M., Ip, Y. K. (2009). Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154, 360-369. Chourasia, T. K., D'Cotta, H., Baroiller, J. F., Slosman, T., Cnaani, A. (2018). Effects of the acclimation to high salinity on intestinal ion and peptide transporters in two tilapia species that differ in their salinity tolerance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 218, 16-23. Colin, D. A., Nonnotte, G., Leray, C., Nonnotte, L. (1985). Na+ transport and enzyme activities in the intestine of the freshwater and sea-water adapted trout (Salmo gairdnerii R.). Comparative Biochemistry and Physiology Part A: Physiology, 81, 695-698. Con, P., Nitzan, T., Cnaani, A. (2017). Salinity-dependent shift in the localization of three peptide transporters along the intestine of the Mozambique tilapia (Oreochromis mossambicus). Frontiers in Physiology, 8, 8. De Beauregard, M. C., Pringault, E., Robine, S., Louvard, D. (1995). Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. The EMBO Journal, 14, 409-421. Donowitz, M., Mohan, S., Zhu, C. X., Chen, T. E., Lin, R., Cha, B., Zachos, N. C., Murtazina, R., Sarker, R., Li, X. (2009). NHE3 regulatory complexes. Journal of Experimental Biology, 212, 1638-1646. Esbaugh, A. J., Grosell, M. (2014). Esophageal desalination is mediated by Na+, H+ exchanger-2 in the gulf toadfish (Opsanus beta). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 171, 57-63. Evans, D. H., Hyndman, K. A., Cornwell, E., Buchanan, P. (2011). Urotensin II and its receptor in the killifish gill: regulators of NaCl extrusion. Journal of Experimental Biology, 214, 3985-3991. Evans, D. H., Piermarini, P. M., Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85, 97-177. Farrell, A. P. (2011). Encyclopedia of fish physiology: from genome to environment. Academic Press, 1129-1444. Grosell, M. (2007). Intestinal transport processes in marine fish osmoregulation. Fish Osmoregulation, 333. Flik, G., Verbost, P. M., Bonga, S. E. W. (1995). Calcium Transport Processes in Fishes. In Fish physiology, 14, 317-342. Academic Press. Friederich, E., Huet, C., Arpin, M., Louvard, D. (1989). Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell, 59, 461-475. Friederich, E., Pringault, E., Arpin, M. Louvard, D. (1990). From the structure to the function of villin, an actin‐ binding protein of the brush border. Bioessays, 12, 403-408. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469, 543-547. Genz, J., Esbaugh, A. J., Grosell, M. (2011). Intestinal transport following transfer to increased salinity in an anadromous fish (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 159, 150-158. Gross, J. E., Wang, Z., Wunder, B. A. (1985). Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. Journal of Mammalogy, 66, 661-667. Grosell, M. (2006). Intestinal anion exchange in marine fish osmoregulation. Journal of Experimental Biology, 209, 2813-2827. Grosell, M., Genz, J., Taylor, J. R., Perry, S. F., Gilmour, K. M. (2009). The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout. Journal of Experimental Biology, 212, 1940-1948. Grosell, M., Taylor, J. R. (2007). Intestinal anion exchange in teleost water balance. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148, 14-22. He, P., Yun, C. C. (2009). Mechanisms of the Regulation of the Intestinal Na+/H+ exchanger NHE3. BioMed Research International, 2010, 238080. Helfman, G., Collette, B. B., Facey, D. E., Bowen, B. W. (2009). The diversity of fishes: biology, evolution, and ecology. John Wiley & Sons. Hirose, S., Kaneko, T., Naito, N., Takei, Y. (2003). Molecular biology of major components of chloride cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136, 593-620. Höfer, D., Drenckhahn, D. (1992). Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry, 98, 237-242. Hoogerwerf, W. A., Tsao, S. C., Devuyst, O., Levine, S. A., Yun, C. H., Yip, J. W., Cohen, M. E., Wilson, P. D., Lazenby, A. J., Tse, C. M., Donowitz, M. (1996). NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. American Journal of Physiology-Gastrointestinal and Liver Physiology, 270, G29-G41. Hootman, S. R., Philpott, C. W. (1979). Ultracytochemical localization of Na+, K+‐activated ATPase in chloride cells from the gills of a euryhaline teleost. The Anatomical Record, 193, 99-129. Hu, M. Y., Michael, K., Kreiss, C. M., Stumpp, M., Dupont, S., Tseng, Y. C., Lucassen, M. (2016). Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua. Frontiers in Physiology, 7, 198. Hu, P., Li, S., Zhong, Y., Mu, X., Gui, L., Zhang, J. (2014). Identification of fxyd genes from the spotted scat (Scatophagus argus): molecular cloning, tissue-specific expression, and response to acute hyposaline stress. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 174, 15-22. Huang, C. Y., Chao, P. L., Lin, H. C. (2010). Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155, 309-318. Johnston, C. E., Cheverie, J. C. (1985). Comparative analysis of ionoregulation in rainbow trout (Salmo gairdneri) of different sizes following rapid and slow salinity adaptation. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1994-2003. Karnaky, K. J., Kinter, L. B., Kinter, W. B., Stirling, C. E. (1976). Teleost chloride cell. II. Autoradiographic localization of gill Na, K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. The Journal of Cell Biology, 70, 157-177. Kalujnaia, S., McWilliam, I. S., Zaguinaiko, V. A., Feilen, A. L., Nicholson, J., Hazon, N., Cutler, C. P., Cramb, G. (2007). Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiological Genomics, 31(3), 385-401. Kang, C. K., Lee, T. H. (2014). Medaka villin 1-like protein (VILL) is associated with the formation of microvilli induced by decreasing salinities in the absorptive ionocytes. Frontiers in Zoology, 11, 2. Kardong, K. V. (2009). Vertebrates: comparative anatomy, function, evolution. Boston: McGraw-Hill Higher Education. Khurana, S., George, S. P. (2008). Regulation of cell structure and function by actin ‐binding proteins: Villin's perspective. FEBS letters, 582, 2128-2139. Koksoy, A. A. (2002). Na+, K+-ATPase: a review. Journal of Ankara Medical School, 24, 73-82. Krogdahl, A., Bakke-McKellep, A. M. (2005). Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 141, 450-460. Lasserre, P. (1971). Increase of (Na+ + K+)-dependent ATPase activity in gills and kidneys of two euryhaline marine teleosts, Crenimugil labrosus (Risso, 1826) and Dicentrarchus labrax (Linnaeus, 1758), during adaptation to fresh water. Life Sciences, 10, 113-119. Li, Z., Lui, E. Y., Wilson, J. M., Ip, Y. K., Lin, Q., Lam, T. J., Lam, S. H. (2014). Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water. PloS One, 9, e87591. Lin, H., Randall, D. (1995). Proton Pumps in Fish Gills. In Fish physiology (Vol. 14, pp. 229-255). Academic Press. Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2^(-ΔΔCT) method. Methods, 25, 402-408. Madsen, S. S., Bujak, J., Tipsmark, C. K. (2014). Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? Journal of Experimental Biology, 217, 3108-3121. Marshall, W. S., Lynch, E. M., Cozzi, R. R. (2002). Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. Journal of Experimental Biology, 205, 1265-1273. Marshall, W. S., Grosell, M. (2006). Ion transport, osmoregulation, and acid-base balance. The Physiology of Fishes, 3, 177-230. McCormick, S. D., Farrell, A. P., Brauner, C. J. (Eds.). (2013). Fish Physiology: Euryhaline Fishes (Vol. 32, 1485-1486). Academic Press. Nadella, S. R., Patel, D., Ng, A., Wood, C. M. (2014). An in vitro investigation of gastrointestinal Na+ uptake mechanisms in freshwater rainbow trout. Journal of Comparative Physiology B, 184, 1003-1019. Naya, D. E., Karasov, W. H., Bozinovic, F. (2007). Phenotypic plasticity in laboratory mice and rats: a meta-analysis of current ideas on gut size flexibility. Evolutionary Ecology Research, 9, 1363-1374. Nonnotte, L., Boeuf, G., Nonnotte, G. (1995). The role of growth hormone in the adaptability of Atlantic salmon (Salmo salar L.) to seawater: effects on the morphology of the mucosa of the middle intestine. Canadian Journal of Zoology, 73, 2361-2374. Olsson, C., Holmberg, A., Holmgren, S. (2008). Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. Journal of Comparative Neurology, 508, 756-770. Peng, W., Lu, D. Q., Li, G. F., Zhang, X., Yao, M., Zhang, Y., Lin, H. R. (2016). Two distinct interferon-γ genes in Tetraodon nigroviridis: functional analysis during Vibrio parahaemolyticus infection. Molecular Immunology, 70, 34-46. Potts, W. T. (1994). Kinetics of sodium uptake in freshwater animals: a comparison of ion-exchange and proton pump hypotheses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 266, R315-R320. Rainboth, W. J. (1996) Fishes of the Cambodian Mekong. FAO Species Identification Field Guide for Fishery Purposes. FAO, Rome. Revenu, C., Athman, R., Robine, S., Louvard, D. (2004). The co-workers of actin filaments: from cell structures to signals. Nature reviews Molecular Cell Biology, 5, 635-646. Rimmer, D. W., Wiebe, W. J. (1987). Fermentative microbial digestion in herbivorous fishes. Journal of Fish Biology, 31, 229-236. Robine, S., Huet, C., Moll, R., Sahuquillo-Merino, C., Coudrier, E., Zweibaum, A., Louvard, D. (1985). Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proceedings of the National Academy of Sciences, 82, 8488-8492. Rodríguez, A., Gisbert, E., Rodríguez, G., Castelló-Orvay, F. (2005). Histopathological observations in European glass eels (Anguilla anguilla) reared under different diets and salinities. Aquaculture, 244, 203-214. Romano, A., Barca, A., Storelli, C., Verri, T. (2014). Teleost fish models in membrane transport research: the PEPT1 (SLC15A1) H+–oligopeptide transporter as a case study. The Journal of Physiology, 592, 881-897. Romano, N., Syukri, F., Karami, A., Omar, N., Khalid, N. (2017). Salinity‐induced changes to the survival, growth and glycogen distribution in the early fry stages of silver barb, Barbodes gonionotus (Bleeker, 1850). Journal of Applied Ichthyology, 33, 509-514. Ruiz-Jarabo, I., Barany, A., Jerez-Cepa, I., Mancera, J. M., Fuentes, J. (2017). Intestinal response to salinity challenge in the Senegalese sole (Solea senegalensis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 204, 57-64. Sáez, A. G., Lozano, E., Zaldívar-Riverón, A. (2009). Evolutionary history of Na, K-ATPases and their osmoregulatory role. Genetica, 136, 479-490. Salman, N. A., Eddy, F. B. (1987). Response of chloride cell numbers and gill Na+K+ ATPase activity of freshwater rainbow trout (Salmo gairdneri Richardson) to salt feeding. Aquaculture, 61, 41-48. Sangaletti, R., Terova, G., Peres, A., Bossi, E., Corà, S., Saroglia, M. (2009). Functional expression of the oligopeptide transporter PepT1 from the sea bass (Dicentrarchus labrax). Pflügers Archiv-European Journal of Physiology, 459, 47-54. Schliewen, U. K. (1992) Aquarium fish. New York: Barron's Education Series. Seale, A. P., Stagg, J. J., Yamaguchi, Y., Breves, J. P., Soma, S., Watanabe, S., Kaneko, T., Cnaani, A., Harpaz, S., Lerner, D. T., Grau, E. G. (2014). Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine. General and comparative endocrinology, 206, 146-154. Shawki, A., Engevik, M. A., Kim, R. S., Knight, P. B., Baik, R. A., Anthony, S. R., Worrell, R. T., Shull, G. E., Mackenzie, B. (2016). Intestinal brush-border Na+/H+ exchanger-3 drives H+-coupled iron absorption in the mouse. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G423-G430. Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. American Journal of Physiology-Legacy Content, 93, 480-505. Smith, N. F., Talbot, C., Eddy, F. B. (1989). Dietary salt intake and its relevance to ionic regulation in freshwater salmonids. Journal of Fish Biology, 35, 749-753. Stevens, T. H., Forgac, M. (1997). Structure, function and regulation of the vacuolar (H+)-ATPase. Annual Review of Cell and Developmental Biology, 13, 779-808. Takei, Y., Hiroi, J., Takahashi, H., Sakamoto, T. (2014). Diverse mechanisms for body fluid regulation in teleost fishes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307, R778-R792. Takei, Y., Wong, M. K., Pipil, S., Ozaki, H., Suzuki, Y., Iwasaki, W., Kusakabe, M. (2016). Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 312, R231-R244. Taylor, J. R., Mager, E. M., Grosell, M. (2010). Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation. Journal of Experimental Biology, 213, 459-468. Therien, A. G., Blostein, R. (2000). Mechanisms of sodium pump regulation. American Journal of Physiology-Cell Physiology, 279, C541-C566. Verri, T., Romano, A., Barca, A., Kottra, G., Daniel, H., Storelli, C. (2010). Transport of di‐and tripeptides in teleost fish intestine. Aquaculture Research, 41, 641-653. Wang, Z., Du, J., Lam, S. H., Mathavan, S., Matsudaira, P., Gong, Z. (2010). Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine. BMC Genomics, 11, 392. Whittamore, J. M. (2012). Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. Journal of Comparative Physiology B, 182, 1-39. Wong, M. K., Pipil, S., Ozaki, H., Suzuki, Y., Iwasaki, W., Takei, Y. (2016). Flexible selection of diversified Na+/K+-ATPase α-subunit isoforms for osmoregulation in teleosts. Zoological Letters, 2, 15. Yun, C. H., Tse, C. M., Nath, S. K., Levine, S. A., Brant, S. R., Donowitz, M. (1995). Mammalian Na+/H+ exchanger gene family: structure and function studies. American Journal of Physiology-Gastrointestinal and Liver Physiology, 269, G1-G11. Zimmer, A. M., Wilson, J. M., Wright, P. A., Hiroi, J., Wood, C. M. (2017). Different mechanisms of Na+ uptake and ammonia excretion by the gill and yolk sac epithelium of early life stage rainbow trout. Journal of Experimental Biology, 220 , 775-786.zh_TW
dc.description.abstract廣鹽性魚類的腸道同時具有養分吸收和滲透壓調節的功能,藉由鈉鉀幫浦(NKA)或是氫離子幫浦(VHA)所製造的細胞膜內外離子梯度作為動力,調控腸道物質進出,而寡肽在魚類腸道是一種重要的蛋白質養分吸收型態,它的吸收是藉由鈉氫交換蛋白(NHE)和寡肽吸收蛋白(PepT1)共轉運入胞內,為了解腸道細胞膜內外離子梯度面臨鹽度變化時,養分吸收機制的可能改變,本實驗即以探討墨綠凹鼻魨小腸寡肽吸收機制相關蛋白在不同環境鹽度下的變化為目的。結果顯示,在解剖層次,淡水馴養組別的小腸相對長度及微絨毛量都有顯著增加。在分子與蛋白表現層次,淡水組的PepT1, NKA及NHE2表現量亦皆有顯著提升。由本研究的結果推論,不同環境鹽度下調控寡肽吸收機制的離子梯度可能來自位在腸道表皮細胞NKA的參與,而VHA在不同鹽度環境中其活性表現並沒有顯著變化,可能不參與小腸寡肽的吸收。最後,經由小腸的形態特徵與寡肽吸收相關運輸蛋白的表現推論,本研究認為墨綠凹鼻魨在淡水環境中對寡肽吸收有較高的需求。zh_TW
dc.description.abstractThe intestines of the euryhaline teleosts are capable of both the functions in nutrient absorption and osmoregulation, and the In and out of intestinal substances are regulated by the intracellular and extracellular ion gradients made by Na+-K+ATPase (NKA) or vacuolar-type H+-ATPase (VHA). Oligopeptide is the crucial form of protein absorption in the fish gut, and its absorption is co-transported into the cell by sodium hydrogen exchange protein (NHE) and oligopeptide absorption protein (PepT1). In order to understand the possible changes in the absorption mechanism of nutrients when the intestinal membrane is facing salinity changes. This thesis is aim to investigate the changes of proteins related to the oligopeptides absorption mechanism of small intestine in the spotted green puffer in different environmental salinities. In the anatomical aspects, the relative length and amount of villin of the intestines increased in the FW group. In the molecular and protein aspects, the expression of PepT1, NKA and NHE2 also increased in the FW group. It is inferred from the results that the ion gradients that regulate the absorption mechanism of oligopeptides under different environmental salinities may be derived from the involvement of NKA in the intestinal epithelial cells, while VHA has no significant changes in its activity in different salinity environments and may not participate in the absorption of intestinal oligopeptides. Finally, the upregulation of oligopeptide absorption-related transporters and the plasticity of intestine morphological traits revealed that there is a higher demand of oligopeptide absorption in FW-acclimated spotted green puffer.en_US
dc.description.tableofcontents中文摘要………………………………………………………………… i Abstract………………………………………………………………… ii Contents……………………………………………………………….. iv Introduction……………………………………………………………. 1 Aims…………………………………………………………………….. 8 Materials and Methods………………………………………………... 9 Results…………………………………………………………………. 18 Discussion……………………………………………………………... 24 Figures………………………………………………………………… 29 References…………………………………………………………..... 43 Appendix……………………………………………………………… 56zh_TW
dc.subjectenvironmental salinityen_US
dc.subjectspotted green pufferen_US
dc.title環境鹽度對墨綠凹鼻魨(Dichotomyctere nigroviridis)小腸中寡肽吸收機制相關蛋白表現的影響zh_TW
dc.titleSalinity Effects on Expressions of Oligopeptide-Absorbing-Mechanisms Related Proteins in the Intestine of the Spotted Green Puffer (Dichotomyctere nigroviridis)en_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:生命科學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7106052217-1.pdf11.49 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.