Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97744
標題: 基因編輯CMAH基因誘變仔豬未表現Neu5GC型唾液酸對抗豬流行性下痢病毒感染之研究
The Study of CMAH Gene-Edited Mutant Piglets without Expressing Neu5GC Resistant to Porcine Epidemic Diarrhea Virus Infection
作者: 蕭凱烜
Kai-Xuan Hsiao
關鍵字: 豬流行性下痢病毒;基因編輯;Porcine Epidemic Diarrhea Virus;Gene Edit;CRISPR/Cas9
引用: 杜清富 (2016)。新興生技在異種移植之應用及進展。農業生技產業季刊 45:46-54。 林昭男 (2014)。全球豬流行性下痢控制研究進展。畜產報導月刊 173:10-14。 陳啟銘。台灣豬流行性下痢(PED)控制模式之探討。https://www.angrin.tlri.gov.tw/pig/meeting/2017MET/summary/2017PIC_4-3.pdf Alisson-Silva, F., Kawanishi, K., and Varki, A. (2016). Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med 51, 16-30. Alonso, C., Goede, D.P., Morrison, R.B., Davies, P.R., Rovira, A., Marthaler, D.G., and Torremorell, M. (2014). Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res 45, 73. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712. Bhaya, D., Davison, M., and Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297. Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764. Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169-1175. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512. Boettcher, M., and McManus, M.T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58, 575-585. Bosch, B.J., van der Zee, R., de Haan, C.A., and Rottier, P.J. (2003). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77, 8801-8811. Burkard, C., Lillico, S.G., Reid, E., Jackson, B., Mileham, A.J., Ait-Ali, T., Whitelaw, C.B., and Archibald, A.L. (2017). Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS pathogens 13, e1006206. Butler, J.R., Martens, G.R., Estrada, J.L., Reyes, L.M., Ladowski, J.M., Galli, C., Perota, A., Cunningham, C.M., Tector, M., and Joseph Tector, A. (2016). Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res 25, 751-759. Byres, E., Paton, A.W., Paton, J.C., Lofling, J.C., Smith, D.F., Wilce, M.C., Talbot, U.M., Chong, D.C., Yu, H., Huang, S., et al. (2008). Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456, 648-652. Carlson, D.F., Lancto, C.A., Zang, B., Kim, E.S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T.S., and Fahrenkrug, S.C. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nature biotechnology 34, 479-481. Carlson, D.F., Tan, W., Lillico, S.G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D.F., Long, C.R., Whitelaw, C.B., and Fahrenkrug, S.C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceed Natl Acad Sci USA 109, 17382-17387. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl Acids Res 39, e82. Chen, L., Tang, L., Xiang, H., Jin, L., Li, Q., Dong, Y., Wang, W., and Zhang, G. (2014). Advances in genome editing technology and its promising application in evolutionary and ecological studies. GigaScience 3, 24-24. Chiou, H.Y., Huang, Y.L., Deng, M.C., Chang, C.Y., Jeng, C.R., Tsai, P.S., Yang, C., Pang, V.F., and Chang, H.W. (2015). Phylogenetic Analysis of the Spike (S) Gene of the New Variants of Porcine Epidemic Diarrhoea Virus in Taiwan. Transbound Emerg Dis 64, 157-166. Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceed Natl Acad Sci USA 99, 11736-11741. Chou, H.H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K.L., Muchmore, E.A., Nelson, D.L., Warren, S.T., and Varki, A. (1998). A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proceed Natl Acad Sci USA 95, 11751-11756. Chuang, C.K., Chen, C.H., Su, Y.S., Peng, S.H., Lin, T.Y., Huang, C.L., Yang, T.S., and Tu, C.F. (2016). Generation of GGTA1 knockout pigs by using direct pronuclear microinjection with TALEN plasmid DNA vectors. J. Chin. Anim. Sci. 45(3):225-246. Chuang, C.K., Tu, C.F., and Chen, C.H. (2017). Generation of Mutant Pigs by Direct Pronuclear Microinjection of CRISPR-Cas9 Plasmid Vectors. BioProtocol 7(11):e2312. Chylinski, K., Makarova, K.S., Charpentier, E., and Koonin, E.V. (2014). Classification and evolution of type II CRISPR-Cas systems. Nucl Acids Res 42, 6091-6105. Cima, G. (2013). Fighting a deadly pig disease. Industry, veterinarians trying to contain PED virus, new to the US. J Am Vet Med Assoc 243, 469-470. Cost, G.J., Freyvert, Y., Vafiadis, A., Santiago, Y., Miller, J.C., Rebar, E., Collingwood, T.N., Snowden, A., and Gregory, P.D. (2010). BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105, 330-340. Coussement, W., Ducatelle, R., Debouck, P., and Hoorens, J. (1982). Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study. Vet Pathol 19, 46-56. Debouck, P., and Pensaert, M. (1980). Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am J Vet Res 41, 219-223. Debouck, P., Pensaert, M., and Coussement, W. (1981). The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, CV 777. Vet Microbiol 6, 157-165. Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L.K., Sjostrom, H., Noren, O., and Laude, H. (1992). Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417-420. Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., Eckert, M.R., Vogel, J., and Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607. Deng, F., Ye, G., Liu, Q., Navid, M.T., Zhong, X., Li, Y., Wan, C., Xiao, S., He, Q., Fu, Z.F., et al. (2016). Identification and comparison of receptor binding characteristics of the spike protein of two porcine epidemic diarrhea virus strains. Viruses 8, 55. Ducatelle, R., Coussement, W., Debouck, P., and Hoorens, J. (1982). Pathology of experimental CV777 coronavirus enteritis in piglets. II. Electron microscopic study. Vet Pathol 19, 57-66. Gaj, T., Gersbach, C.A., and Barbas, C.F., 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnol 31, 397-405. Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., and Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18, 13. Godet, M., Grosclaude, J., Delmas, B., and Laude, H. (1994). Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68, 8008-8016. Hai, T., Teng, F., Guo, R., Li, W., and Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372-375. Hauschild, J., Petersen, B., Santiago, Y., Queisser, A.-L., Carnwath, J.W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P.D., Schwinzer, R., et al. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceed Natl Acad Sci USA 108, 12013-12017. Hayakawa, T., Aki, I., Varki, A., Satta, Y., and Takahata, N. (2006). Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 172, 1139-1146. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433. Jansen, R., Embden, J.D.A.v., Gaastra, W., and Schouls, L.M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6), 1565–1575. Jung, K., and Saif, L.J. (2015). Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J 204, 134-143. Jung, K., Wang, Q., Scheuer, K.A., Lu, Z., Zhang, Y., and Saif, L.J. (2014). Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg Infect Dis 20, 662-665. Kay, S., and Bonas, U. (2009). How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12, 37-43. Kim, C.A., and Berg, J.M. (1996). A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol 3, 940-945. Kim, O., and Chae, C. (2003). Experimental infection of piglets with a korean strain of porcine epidemic diarrhoea virus. J Comp Pathol 129, 55-60. Kocherhans, R., Bridgen, A., Ackermann, M., and Tobler, K. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23, 137-144. Kweon, C.H., Kwon, B.J., Jung, T.S., Kee, Y.J., Hur, D.H., and Hwang, E.K. (1993). Isolation of porcine epidemic diarrhea virus (PEDV) in Korea. Korean J Vet Res 33, 249-254. Kweon, C.H., Kwon, B.J., Lee, J.G., Kwon, G.O., and Kang, Y.B. (1999). Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine 17, 2546-2553. Lee, S., and Lee, C. (2014). Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis 20, 1223-1226. Lei, Y., Guo, X., Liu, Y., Cao, Y., Deng, Y., Chen, X., Cheng, C.H., Dawid, I.B., Chen, Y., and Zhao, H. (2012). Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proceed Natl Acad Sci USA 109, 17484-17489. Li, B.X., Ge, J.W., and Li, Y.J. (2007). Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365, 166-172. Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., Tang, X., and He, Q. (2012). New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis 18, 1350-1353. Li, W., van Kuppeveld, F.J.M., He, Q., Rottier, P.J.M., and Bosch, B.J. (2016). Cellular entry of the porcine epidemic diarrhea virus. Virus Res 226, 117-127. Lillico, S.G., Proudfoot, C., Carlson, D.F., Stverakova, D., Neil, C., Blain, C., King, T.J., Ritchie, W.A., Tan, W., Mileham, A.J., et al. (2013). Live pigs produced from genome edited zygotes. Scientific reports 3, 2847. Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Jiang, S., Li, J., Du, L., et al. (2015). Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89, 6121-6125. Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., Li, S., Dai, Y., and Li, N. (2014). Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PloS one 9, e95225. Lutz, A.J., Li, P., Estrada, J.L., Sidner, R.A., Chihara, R.K., Downey, S.M., Burlak, C., Wang, Z.Y., Reyes, L.M., Ivary, B., et al. (2013). Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27-35. Madson, D.M., Arruda, P.H., Magstadt, D.R., Burrough, E.R., Hoang, H., Sun, D., Bower, L.P., Bhandari, M., Gauger, P.C., Stevenson, G.W., et al. (2016). Characterization of porcine epidemic diarrhea virus isolate US/Iowa/18984/2013 infection in 1-day-old cesarean-derived colostrum-deprived piglets. Vet Pathol 53, 44-52. Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J., Wolf, Y.I., Yakunin, A.F., et al. (2011). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9, 467-477. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736. Mali, P., Esvelt, K.M., and Church, G.M. (2013). Cas9 as a versatile tool for engineering biology. Nat Methods 10, 957-963. Malykh, Y.N., Krisch, B., Shaw, L., Warner, T.G., Sinicropi, D., Smith, R., Chang, J., and Schauer, R. (2001). Distribution and localization of CMP-N-acetylneuraminic acid hydroxylase and N-glycolylneuraminic acid-containing glycoconjugates in porcine lymph node and peripheral blood lymphocytes. Eur J Cell Biol 80, 48-58. Mojica, F.J., Juez, G., and Rodriguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613-621. Mojica, F.J.M., and Garrett, R.A. (2013). Discovery and seminal developments in the CRISPR field. In CRISPR-Cas Systems: RNA-mediated adaptive immunity in bacteria and archaea., R. Barrangou, and J. van der Oost, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 1-31. Moore, F.E., Reyon, D., Sander, J.D., Martinez, S.A., Blackburn, J.S., Khayter, C., Ramirez, C.L., Joung, J.K., and Langenau, D.M. (2012). Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One 7, e37877. Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501. Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T., and Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucl Acids Res 39, 9283-9293. Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Polejaeva, I.A., and Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9, e106718. Niu, D., Wei, H.J., Lin, L., George, H., Wang, T., Lee, I.H., Zhao, H.Y., Wang, Y., Kan, Y., Shrock, E., et al. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science (New York, NY) 357, 1303-1307. Oh, J., Lee, K.W., Choi, H.W., and Lee, C. (2014). Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol 159, 2977-2987. Oh, J.S., Song, D.S., and Park, B.K. (2003). Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of veterinary science 4, 269-275. Oldham, J. (1972). Pig Farming Supplement, 72-73. Park, K.E., Kaucher, A.V., Powell, A., Waqas, M.S., Sandmaier, S.E., Oatley, M.J., Park, C.H., Tibary, A., Donovan, D.M., Blomberg, L.A., et al. (2017). Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep 7, 40176. Pensaert, M.B., and Callebaut P., and Debouck, P. (1982). Porcine epidemic diarrhea (PED) caused by a coronavirus: Present knowledge. Proc Congr Int Pig Vet Soc 7, 52. Pensaert, M.B., and de Bouck, P. (1978). A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58, 243-247. Pensaert, M.B., Debouck, P., and Reynolds, D.J. (1981). An immunoelectron microscopic and immunofluorescent study on the antigenic relationship between the coronavirus-like agent, CV 777, and several coronaviruses. Arch Virol 68, 45-52. Petersen, B. (2017). Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 52 (Suppl 3), 4-13. Petersen, B., Frenzel, A., Lucas-Hahn, A., Herrmann, D., Hassel, P., Klein, S., Ziegler, M., Hadeler, K.G., and Niemann, H. (2016). Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation 23, 338-346. Pospischil, A., Stuedli, A., and Kiupel, M. (2002). Update on porcine epidemic diarrhea. Swine Health Product 10, 81-85. Proudfoot, C., Carlson, D.F., Huddart, R., Long, C.R., Pryor, J.H., King, T.J., Lillico, S.G., Mileham, A.J., McLaren, D.G., Whitelaw, C.B., et al. (2015). Genome edited sheep and cattle. Transgenic Res 24, 147-153. Reyes, L.M., Estrada, J.L., Wang, Z.Y., Blosser, R.J., Smith, R.F., Sidner, R.A., Paris, L.L., Blankenship, R.L., Ray, C.N., Miner, A.C., et al. (2014). Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193, 5751-5757. Romer, P., Recht, S., and Lahaye, T. (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceed Natl Acad Sci USA 106, 20526-20531. Ryu, J., Prather, R.S., and Lee, K. (2018). Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9, 5. Saif, L.J., Pensaert, M.P., Sestak, K., Yeo, S.G., and Jung, K. (2012). Coronaviruses. In Diseases of Swine. (Iowa State University, Ames, IA, USA: Wiley-Blackwell), pp. 501-524. Samraj, A.N., Laubli, H., Varki, N., and Varki, A. (2014). Involvement of a non-human sialic Acid in human cancer. Front Oncol 4, 33. Sato, T., Takeyama, N., Katsumata, A., Tuchiya, K., Kodama, T., and Kusanagi, K. (2011). Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes 43, 72-78. Schornack, S., Meyer, A., Romer, P., Jordan, T., and Lahaye, T. (2006). Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163, 256-272. Schwegmann-Wessels, C., and Herrler, G. (2006). Sialic acids as receptor determinants for coronaviruses. Glycoconj J 23, 51-58. Shibata, I., Tsuda, T., Mori, M., Ono, M., Sueyoshi, M., and Uruno, K. (2000). Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet Microbiol 72, 173-182. Song, D., Moon, H., and Kang, B. (2015). Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin Exp Vaccine Res 4, 166-176. Song, D., and Park, B. (2012). Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44, 167-175. Song, D.S., Oh, J.S., Kang, B.K., Yang, J.S., Moon, H.J., Yoo, H.S., Jang, Y.S., and Park, B.K. (2007). Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci 82, 134-140. Song, D.S., Yang, J.S., Oh, J.S., Han, J.H., and Park, B.K. (2003). Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine 21, 1833-1842. Stevenson, G.W., Hoang, H., Schwartz, K.J., Burrough, E.R., Sun, D., Madson, D., Cooper, V.L., Pillatzki, A., Gauger, P., Schmitt, B.J., et al. (2013). Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest 25, 649-654. Sun, R.Q., Cai, R.J., Chen, Y.Q., Liang, P.S., Chen, D.K., and Song, C.X. (2012). Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 18, 161-163. Sung, M.H., Deng, M.C., Chung, Y.H., Huang, Y.L., Chang, C.Y., Lan, Y.C., Chou, H.L., and Chao, D.Y. (2015). Evolutionary characterization of the emerging porcine epidemic diarrhea virus worldwide and 2014 epidemic in Taiwan. Infect Genet Evol 36, 108-115. Sung, Y.H., Baek, I.J., Kim, D.H., Jeon, J., Lee, J., Lee, K., Jeong, D., Kim, J.S., and Lee, H.W. (2013). Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31, 23-24. Takahashi, K., Okada, K., and Ohshima, K. (1983). An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. Nihon Juigaku Zasshi 45, 829-832. Tan, W., Carlson, D.F., Lancto, C.A., Garbe, J.R., Webster, D.A., Hackett, P.B., and Fahrenkrug, S.C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceed Natl Acad Sci USA 110, 16526-16531. Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., and Muchmore, E. (2003). Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proceed Natl Acad Sci USA 100, 12045-12050. Tresnan, D.B., Levis, R., and Holmes, K.V. (1996). Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70, 8669-8674. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646. Usami , Y., Yamaguchi , O., Kumanomido , K., and Matsumura , Y. (1998). Antibody response of pregnant sows to porcine epidemic diarrhea virus live veccine and maternally-derived antibodies of the piglets. Japan Vet Med Assoc 51(11), 652-655. Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., Li, J., Zhang, Y., Fan, Y., Huang, B., et al. (2013). Porcine epidemic diarrhea virus variants with high pathogenicity, China. Emerg Infect Dis 19, 2048-2049. Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., et al. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 5, 13878. Wang, Y., Du, Y., Zhou, X., Wang, L., Li, J., Wang, F., Huang, Z., Huang, X., and Wei, H. (2016). Efficient generation of B2m-null pigs via injection of zygote with TALENs. Sci Rep 6, 38854. White, F.F., and Yang, B. (2009). Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 150, 1677-1686. Whitworth, K.M., Rowland, R.R., Ewen, C.L., Trible, B.R., Kerrigan, M.A., Cino-Ozuna, A.G., Samuel, M.S., Lightner, J.E., McLaren, D.G., Mileham, A.J., et al. (2016). Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature biotechnology 34, 20-22. Whyte, J.J., Zhao, J., Wells, K.D., Samuel, M.S., Whitworth, K.M., Walters, E.M., Laughlin, M.H., and Prather, R.S. (2011). Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular reproduction and development 78, 2. Woode, G.N., Bridger, J., Hall, G.A., Jones, J.M., and Jackson, G. (1976). The isolation of reovirus-like agents (rota-viruses) from acute gastroenteritis of piglets. J Med Microbiol 9, 203-209. Wu, H., Wang, Y., Zhang, Y., Yang, M., Lv, J., Liu, J., and Zhang, Y. (2015). TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceed Natl Acad Sci USA 112, E1530-1539. Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., et al. (2011). Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell research 21, 979-982. Yang, H., Zhang, J., Zhang, X., Shi, J., Pan, Y., Zhou, R., Li, G., Li, Z., Cai, G., and Wu, Z. (2018). CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res 151, 63-70. Yeager, C.L., Ashmun, R.A., Williams, R.K., Cardellichio, C.B., Shapiro, L.H., Look, A.T., and Holmes, K.V. (1992). Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422. Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., and Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell research 21, 1638-1640. Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., Yao, J., et al. (2017). Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceed Natl Acad Sci USA 114, E9474-e9482.
摘要: 
猪流行性下痢病毒(porcine epidemic diarrhea virus, PEDV)於1971年在歐洲首度被發現,臺灣過往的疫情屬於傳統型PEDV零星的地區性流行,而2013年底爆發之疫情則源自新強毒變異株,感染新生仔豬出現嚴重下痢及嘔吐等臨床症狀,致死率可高達100%。檢視PEDV感染腸道細胞途徑,係與唾液酸及胺基肽酶N(aminopeptidase N, APN)可能之受體結合接觸細胞,受感染細胞逐漸且持續的壞死及脫落,並進一步造成絨毛結構萎縮,使病仔豬無法攝取所需營養、水分和礦物質而漸漸失重,最後死亡。PEDV對臺灣養豬產業造成重創,日本、韓國、中國及美國等養豬國家亦蒙受重大經濟損失,迄今仍無有效疫苗可遏止PEDV肆虐。本研究應用CRISPR/Cas9(clustered regularly interspaced short palindromic repeat/CRISPR associated protein)基因編輯技術,產製N-glycolylneuraminic acid (Neu5GC)型唾液酸合成酵素(CMP-N-glycolylneuraminic acid hydroxylase, CMAH)基因剔除(knockout, KO)豬隻,測試其後裔仔豬對PEDV之耐受性。研究團隊以CMAH 基因之CRISPR 兩個single guide RNA(sgRNA)及Cas9 mRNA顯微注射至受精卵細胞質,獲得四頭活仔L667-02、-10、-11及-12均為雙染色體CMAH基因突變,組織經檢測無Neu5GC型唾液酸存在,其子代亦同。本研究以三頭初代CMAH基因剔除母豬(L667-10,-11,-12)與其全或半同胞公豬L667-02配種,所產下F1代KO型仔豬,與同年齡WT型之新生仔豬進行接種病毒試驗;試驗一及三使用2日齡仔豬,試驗二則為3日齡仔豬,進行口腔接種1x103 TCID50/10 mL 之PEDV變異株(nv-PEDV)稀釋液,試驗期間每4 h觀察其臨床症狀及餵食嬰兒奶粉調配乳或母豬乳,同時對其活力狀態評分並記錄之;並在72 hpi(hours post inoculation)後中止試驗進行剖檢,取空腸前、中段及迴腸組織經H&E染色及免疫螢光染色分析感染病變程度。試驗結果顯示,所有仔豬皆出現下痢、嘔吐及體重減輕等典型症狀。試驗一在試驗期間餵食商業用嬰兒奶粉,6頭KO型仔豬死亡4頭(67%),WT型仔豬則6頭全數死亡(100%),兩者之存活率未有顯著差異,但腸道組織病變程度由輕到重變異極大,KO型仔豬明顯優於WT型仔豬;然試驗二使用3日齡仔豬,試驗期間同樣餵食嬰兒奶粉,則未能獲得預期與試驗一相同之結果,在存活率及腸道病變程度之比較皆無顯著差異;試驗三為釐清是否母豬乳與商業用嬰兒奶粉所含不同量之Neu5GC及Neu5AC(N-acetlylneuraminic acid)干擾試驗結果,改為餵飼試驗仔豬原對應母豬乳或脫脂乳一天,後續改餵食含5%葡萄糖乳酸林格氏液,結果顯示KO型仔豬與WT型仔豬整體存活率極高,但兩者之間並無顯著差異;經高效液相層析法分析,雖然KO型母豬乳未含Neu5GC,WT型母豬乳與商業用嬰兒奶粉,亦僅含有少量Neu5GC,且含量幾乎相同,顯示餵食不同乳源可能非干擾試驗主要因素,但試驗三餵食方法使試驗豬隻幾乎全數存活,可作為田間豬場對患病仔豬施行支持療法之範例。綜合本研究之結果,顯示對CMAH基因進行基因編輯使其未表現Neu5GC型唾液酸之豬隻無顯著改善耐受PEDV感染之特性,但有減輕嚴重性及延緩臨床症狀之現象。

Porcine epidemic diarrhea virus (PEDV) was first recognized in Europe since 1971, outbreaks of the disease also occurred in Taiwan at the end of 2013. Pigs infected by PEDV have been detected clinical sign including diarrhea and vomiting, and the morality rate of PEDV is up to 100% in neonatal piglets. The whole process of the infection of virus, first virus which bind with putative receptors such as sialic acid and aminopeptidase N(APN) to contact cells, leading infected cells gradually and continuously into necrosis, shedding and villi atrophy. Then atrophy causes the infected piglets uncapable absorbing nutrients, water and minerals, resulting in losing body weight and death. PEDV has resulted in significant economic losses in pig production in Taiwan and also in Japan, Korea, China and America, and furthermore still no effective vaccines against PEDV infection. The purpose of this study was to exam PEDV resistance of CMAH mutant (knockout, KO) piglets which generated by CRISPR/Cas9 gene editing techniques. Cytoplasm of pronuclear porcine new fertilized eggs were microinjected with two sites of sgRNA/Cas9 mRNA, and four alive piglets (L667-02,-10,-11 and -12) were born and all bi-alleles mutants. Their tissues were screened and shown without Neu5GC, and also germline transmission to their offspring. All piglets used in this study were neonatal F1 CMAH KO offspring, which delivered by the three female founders (L667-10,-11,-12) served by the male founder (L667-02). The 2-day-old or 3-day-old KO piglets were used for Exp. I and Exp. III or Exp. II, respectively; and the concurrently same age wild type (WT) piglets were used as control. Piglets were oral inoculated with 1 mL of 1x103 TCID50/mL PEDV. Then at every 4 h for three days, hand-feed milk and clean water were offered and their clinical signs were recorded for vitality analysis. After 72 h PEDV challenged, all piglets were sacrificed for necropsy, and the upper and middle of jejunum and ileum were sampled for immunofluorescence assay (IFA). Results showed that all of the piglets appeared typical clinical signs including diarrhea, vomiting and losing weight. In Exp. I, four of six KO piglets and all of six WT piglet died (67% vs. 100%), survival rate didn't have a significant difference between two genotypes of piglets though the high variation in the extent of pathologic changes. The KO piglets apparently have a better resistance to PEDV than WT piglets. Nevertheless, in Exp. II, resulted no significant difference in clinical data, similar to Exp. I, and even in pathologic information. In Exp. III, in order to rulling out the interferece of Neu5GC/Neu5AC in sow milk and commercial baby milk powder, which used in Exp. I and II, piglets were fed dam's milk or skim milk for one day, and then replaced to lactated Ringer's solution supplementary with 5% glucose. Results indicated that the survival rate between both genotypes of piglets were all improved and no significant difference. Moreover, after analyzing by HPLC, commercial baby milk powder and WT dam's milk didn't contain a high quantity of Neu5GC, which not appeared in KO sow's milk. The results suggest that milk isn't the key factor in interfere the result. Furthermore, orally offer made almost the piglets survive that could be an example for supportive play chotherapy on infected piglets. This study demonstrates that CMAH gene editing, piglets without Neu5GC expression have not increased resistance to PEDV infection, but may lessen the severity of the infection and delay its occurence.
URI: http://hdl.handle.net/11455/97744
Rights: 同意授權瀏覽/列印電子全文服務,2021-11-17起公開。
Appears in Collections:生命科學院碩士在職專班

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5104052009-1.pdf2.78 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.