Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorJun-Yi Yangen_US
dc.contributor.authorShu-Heng Changen_US
dc.identifier.citation蔡明真 (2017) 植物菌質體分必蛋白SAP11差異度與功能性分析探討。國立中興大學生物化學所 碩士學位論文 吳誌堂 (2016) 細菌性分泌蛋白SAP11引起擬南芥叢枝外表型之功能性分析。國立中興大學生物化學所 碩士學位論文 Aggarwal, P., Das Gupta, M., Joseph, A.P., Chatterjee, N., Srinivasan, N., and Nath, U. (2010). Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22, 1174-1189. Aguilar-Martinez, J.A., Poza-Carrion, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458-472. Bai, X., Correa, V.R., Toruno, T.Y., Ammar el, D., Kamoun, S., and Hogenhout, S.A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant Microbe Interact 22, 18-30. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188, 3682-3696. Baurle, I., and Dean, C. (2006). The timing of developmental transitions in plants. Cell 125, 655-664. Bertaccini, A., and Marani, F. (1982). Electron microscopy of two viruses and mycoplasma-like organisms in lilies with deformed flowers. Phytopathologia Mediterranea 21, 8-14. Bertaccini, A., Duduk, B., Paltrinieri, S., and Contaldo, N. (2014). Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. Blumel, M., Dally, N., and Jung, C. (2015). Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotechnol 32, 121-129. Cettul, E., and Firrao, G. (2011). Development of phytoplasma-induced flower symptoms in Arabidopsis Thaliana. Physiol Mol Plant P 76, 204-211. Chang, S.H., Cho, S.T., Chen, C.L., Yang, J.Y., and Kuo, C.H. (2015). Draft Genome Sequence of a 16SrII-A Subgroup Phytoplasma Associated with Purple Coneflower (Echinacea purpurea) Witches' Broom Disease in Taiwan. Genome Announc 3. Chen, L., Chen, Y.Q., Ding, A.M., Chen, H., Xia, F., Wang, W.F., and Sun, Y.H. (2016). Genome-wide analysis of TCP family in tobacco. Genet Mol Res 15. Chung, W.C., Chen, L.L., Lo, W.S., Lin, C.P., and Kuo, C.H. (2013). Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8, e62770. De Paolo, S., Gaudio, L., and Aceto, S. (2015). Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep 5, 16265. Doebley, J., Stec, A., and Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333-346. Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485-488. Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. (1967). Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches' Broom, Aster Yellows, or Paulownia Witches' Broom. Duduk, B., and Bertaccini, A. (2011). Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Gai, Y.P., Li, Y.Q., Guo, F.Y., Yuan, C.Z., Mo, Y.Y., Zhang, H.L., Wang, H., and Ji, X.L. (2014). Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 4, 5378. Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C.P., Van Aken, O., Millar, A.H., Murcha, M., and Whelan, J. (2010). TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22, 3921-3934. Himeno, M., Neriya, Y., Minato, N., Miura, C., Sugawara, K., Ishii, Y., Yamaji, Y., Kakizawa, S., Oshima, K., and Namba, S. (2011). Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J 67, 971-979. Hobbs H, A., Rkddy D. V, R., and Reddy A, S. (1987). Detection of a mycoplasma‐like organism in peanut plants with witches' broom using indirect enzyme‐linked immunosorbent assay (ELISA). Plant Pathol 36, 164-164. Hogenhout, S.A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H.N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403-423. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106, 6416-6421. Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138, 4117-4129. Kakizawa, S., and Yoneda, Y. (2015). The role of genome sequencing in phytoplasma research. Kebrom, T.H., Burson, B.L., and Finlayson, S.A. (2006). Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140, 1109-1117. Kosugi, S., and Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9, 1607-1619. Kosugi, S., and Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30, 337-348. Koyama, T., Sato, F., and Ohme-Takagi, M. (2017). Roles of miR319 and TCP Transcription Factors in Leaf Development. Plant Physiol 175, 874-885. Koyama, T., Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2010). TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22, 3574-3588. Kube, M., Mitrovic, J., Duduk, B., Rabus, R., and Seemuller, E. (2012). Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2012, 185942. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A.M., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 9, 306. Kubota, A., Ito, S., Shim, J.S., Johnson, R.S., Song, Y.H., Breton, G., Goralogia, G.S., Kwon, M.S., Laboy Cintron, D., Koyama, T., Ohme-Takagi, M., Pruneda-Paz, J.L., Kay, S.A., MacCoss, M.J., and Imaizumi, T. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet 13, e1006856. Lee, I.-M., Gundersen-Rindal, D.E., Davis, R.E., and Bartoszyk, I.M. (1998). Revised Classification Scheme of Phytoplasmas based on RFLP Analyses of 16S rRNA and Ribosomal Protein Gene Sequences. International Journal of Systematic and Evolutionary Microbiology 48, 1153-1169. Lee, I.M., Davis, R.E., and Gundersen-Rindal, D.E. (2000). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221-255. Liu, C.T., Huang, H.M., Hong, S.F., Kuo-Huang, L.L., Yang, C.Y., Lin, Y.Y., Lin, C.P., and Lin, S.S. (2015). Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development. Plant Signal Behav 10, e1107690. Liu, J., Cheng, X., Liu, P., Li, D., Chen, T., Gu, X., and Sun, J. (2017). MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genet 13, e1006833. Liu, L.Y., Tseng, H.I., Lin, C.P., Lin, Y.Y., Huang, Y.H., Huang, C.K., Chang, T.H., and Lin, S.S. (2014). High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol 55, 942-957. Lopez, J.A., Sun, Y., Blair, P.B., and Mukhtar, M.S. (2015). TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci 20, 238-245. Lu, Y.T., Li, M.Y., Cheng, K.T., Tan, C.M., Su, L.W., Lin, W.Y., Shih, H.T., Chiou, T.J., and Yang, J.Y. (2014). Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol 164, 1456-1469. Luo, D., Carpenter, R., Vincent, C., Copsey, L., and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794-799. Ma, J., Liu, F., Wang, Q., Wang, K., Jones, D.C., and Zhang, B. (2016). Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development. Sci Rep 6, 21535. MacLean, A.M., Orlovskis, Z., Kowitwanich, K., Zdziarska, A.M., Angenent, G.C., Immink, R.G., and Hogenhout, S.A. (2014). Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12, e1001835. MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Toth, R., Nicolaisen, M., and Hogenhout, S.A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157, 831-841. Maejima, K., Iwai, R., Himeno, M., Komatsu, K., Kitazawa, Y., Fujita, N., Ishikawa, K., Fukuoka, M., Minato, N., Yamaji, Y., Oshima, K., and Namba, S. (2014). Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J 78, 541-554. Manassero, N.G., Viola, I.L., Welchen, E., and Gonzalez, D.H. (2013). TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-127. Martin-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15, 31-39. Minato, N., Himeno, M., Hoshi, A., Maejima, K., Komatsu, K., Takebayashi, Y., Kasahara, H., Yusa, A., Yamaji, Y., Oshima, K., Kamiya, Y., and Namba, S. (2014). The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4, 7399. Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., and Herve, C. (2007). TCP transcription factors predate the emergence of land plants. J Mol Evol 65, 23-33. Nicolas, M., Rodriguez-Buey, M.L., Franco-Zorrilla, J.M., and Cubas, P. (2015). A Recently Evolved Alternative Splice Site in the BRANCHED1a Gene Controls Potato Plant Architecture. Curr Biol 25, 1799-1809. Oshima, K., Maejima, K., and Namba, S. (2013). Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 4, 230. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36, 27-29. Padmanabhan, M.S., Ma, S., Burch-Smith, T.M., Czymmek, K., Huijser, P., and Dinesh-Kumar, S.P. (2013). Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9, e1003235. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263. Popelka, H., and Klionsky, D.J. (2015). Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GABARAP-binding proteins. Autophagy 11, 2153-2159. Preston, J.C., and Hileman, L.C. (2013). Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. Front Plant Sci 4, 80. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513-520. Rubio-Somoza, I., Zhou, C.M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., Wang, J.W., and Weigel, D. (2014). Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Curr Biol 24, 2714-2719. Saccardo, F., Martini, M., Palmano, S., Ermacora, P., Scortichini, M., Loi, N., and Firrao, G. (2012). Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158, 2805-2814. Sarvepalli, K., and Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67, 595-607. Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6, e230. Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell 8, 517-527. Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67, 183-195. Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M. (2009). Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50, 2133-2145. Spanudakis, E., and Jackson, S. (2014). The role of microRNAs in the control of flowering time. J Exp Bot 65, 365-380. Srikanth, A., and Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68, 2013-2037. Strauss, E. (2009). Microbiology. Phytoplasma research begins to bloom. Science 325, 388-390. Su, Y.T., Chen, J.C., and Lin, C.P. (2011). Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol Plant Microbe Interact 24, 1502-1512. Sugawara, K., Honma, Y., Komatsu, K., Himeno, M., Oshima, K., and Namba, S. (2013). The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol 162, 2005-2014. Sugio, A., MacLean, A.M., and Hogenhout, S.A. (2014). The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol 202, 838-848. Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011a). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A 108, E1254-1263. Sugio, A., MacLean, A.M., Kingdom, H.N., Grieve, V.M., Manimekalai, R., and Hogenhout, S.A. (2011b). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49, 175-195. Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., and Ueguchi, C. (2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33, 513-520. Tan, C.M., Li, C.H., Tsao, N.W., Su, L.W., Lu, Y.T., Chang, S.H., Lin, Y.Y., Liou, J.C., Hsieh, L.C., Yu, J.Z., Sheue, C.R., Wang, S.Y., Lee, C.F., and Yang, J.Y. (2016). Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. J Exp Bot 67, 4415-4425. Teotia, S., and Tang, G. (2015). To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8, 359-377. Tran-Nguyen, L., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. (2007). An overview of the genome sequence of 'Candidatus Phytoplasma australiense' - Australian strain. B Insectol 60, 111-112. Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59, 573-594. Vaghchhipawala, Z., Rojas, C.M., Senthil-Kumar, M., and Mysore, K.S. (2011). Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol Biol 678, 65-76. Wang, J.W. (2014). Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65, 4723-4730. Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749. Wei, W., Davis, R.E., Lee, I.M., and Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57, 1855-1867. Wei, W., Kakizawa, S., Jung, H.Y., Suzuki, S., Tanaka, M., Nishigawa, H., Miyata, S., Oshima, K., Ugaki, M., Hibi, T., and Namba, S. (2004). An Antibody Against the SecA Membrane Protein of One Phytoplasma Reacts with Those of Phylogenetically Different Phytoplasmas. Phytopathology 94, 683-686. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750-759. Xu, M., Hu, T., Zhao, J., Park, M.Y., Earley, K.W., Wu, G., Yang, L., and Poethig, R.S. (2016). Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet 12, e1006263. Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17, 268-278. Yang, C.Y., Huang, Y.H., Lin, C.P., Lin, Y.Y., Hsu, H.C., Wang, C.N., Liu, L.Y., Shen, B.N., and Lin, S.S. (2015). MicroRNA396-Targeted SHORT VEGETATIVE PHASE Is Required to Repress Flowering and Is Related to the Development of Abnormal Flower Symptoms by the Phyllody Symptoms1 Effector. Plant Physiol 168, 1702-1716. Yao, X., Ma, H., Wang, J., and Zhang, D. (2007). Genome‐Wide Comparative Analysis and Expression Pattern of TCP Gene Families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology 49, 885-897. Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., Zhang, M., Wang, Q., and Li, C. (2015). Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. Plant Cell 27, 2814-2828. Zhang, J., Hogenhout, S.A., Nault, L.R., Hoy, C.W., and Miller, S.A. (2004). Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology 94, 842-849.zh_TW
dc.description.abstract植物菌質體為一種由昆蟲傳播且無法人工培養的植物病原菌,其分泌的致病性蛋白可以引起病害於重要的經濟作物。當植物受到植物菌質體的感染時會出現許多不同的病徵,其中包含植物開花時間的延遲。本實驗發現Ca. P. asteris Aster Yellow Witches' Broom (AYWB) 植物菌質體的SAP11AYWB致病性蛋白,與其在Peanut Witches' Broom (PnWB) 植物菌質體的同源蛋白SAP11PnWB會導致擬南芥表現不同的外表型病徵。大量表現SAP11AYWB致病性蛋白的擬南芥會有延遲開花時間的病徵,且改變調控開花與生長階段轉換的基因表現量,而大量表現SAP11PnWB致病性蛋白的擬南芥則沒有出現類似的症狀。在植物的生長發育過程中,開花代表著植物從營養生長時期轉換到生殖時期,其中SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) 轉錄因子在調控植物生長階段轉換中扮演著重要角色。由生物資訊分析發現,在SPL基因的上游具有第二型TEOSINTE BRANCHED1, CYCLOIEDA, PROLIFERATION CELL FACTOR1 (TCP) 轉錄因子所辨識的保留性序列,顯示SPL基因的表現可能受到第二型TCP轉錄因子的調控。已知SAP11AYWB致病性蛋白可以與第二型TCP轉錄因子結合,並使其不穩定而其被降解。因此我們推論,SAP11AYWB藉由減少植物體內第二型TCP轉錄因子,並且降低其調控的SPL3基因的表現量,進而引起的開花時間與生長階段轉換的改變。zh_TW
dc.description.abstractPhytoplasmas are insect transmitted and uncultivable plant pathogens that secrete effectors and cause diseases in economically important plants. Plants infected with phytoplasma exhibit several different disease symptoms including delayed flowering time. Interestingly, Ca. P. asteris Aster Yellow Witches' Broom (AYWB) phytoplasma effector SAP11AYWB and its homolog SAP11PnWB, which are found in Peanut Witches' Broom (PnWB) phytoplasma cause different phenotypes when expressed in Arabidopsis. The flowering time of Arabidopsis transgenic plants that express SAP11AYWB were delayed, but not in transgenic plants that express SAP11PnWB. This morphological change correlated to the altered expression level of genes involved in the plant phase transition and flowering time. In plants, flowering is a major morphological transition from vegetative growth phase to reproductive phase, and SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factors play a key role in the regulation of the phase transition. Bioinformatics analysis showed that the upstream of SPL genes contain class II TEOSINTE BRANCHED1, CYCLOIEDA, PROLIFERATION CELL FACTOR1 (TCP) transcription factor binding motif, suggesting that the expression of SPL genes are regulated by class II TCP transcription factors. Based on the fact that SAP11AYWB binds and destabilizes class II TCP transcription factors, we hypothesized that SAP11AYWB-mediated changes in flowering time and phase transition were caused by the decreased expression level of SPL3 through destabilizing TCPs.en_US
dc.description.tableofcontents摘要 i Abstract ii Content iii List of figures vi List of tables vii Chapter I Introduction 1 Phytoplasma 1 The classification of phytoplasma 1 The genome feature of phytoplasma 2 Phytoplasma secretion systems 4 Phytoplasma effectors 5 SAP11 5 SAP54 7 TENGU 8 TCP transcription factors family 9 TCP proteins functions 10 CYC/TB1-TCP 10 CIN-TCP 11 Plant phase transition 12 SPL transcription factors family 13 Chapter II Materials and methods 15 Plant materials and growth conditions 15 Generation of transgenic Arabidopsis plants 15 Antibody production and western blotting 15 Total RNA isolation and quantitative real-time qRT-PCR of mRNAs 16 Quantitative real-time PCR of miRNAs and droplet digital PCR (ddPCR) 17 Confocal microscopy 17 Co-expression assays 18 Transient luciferase report assay in N. benthamiana 18 Primers 19 Chapter III Results 20 SAP11AYWB delayed the flowering time of Arabidopsis 20 SAP11AYWB slows the plant phase transition 21 SPL3 gene expression is directly controlled by class II CIN-TCP transcription factors 22 SAP11AYWB targets flowering-related TCP transcription factors 23 The tcp4-1mutant delay flowering time phenotype is complemented by expressing SPL3 protein 23 The M domain of SAP11s effectors contain critical amino acids for its functions 24 F34, Y35, Y44, N50 and L56 amino acids are crucial for SAP11AYWB function 26 Chapter IV Discussion 27 SAP11AYWB and SAP11PnWB induce different disease symptoms 27 The SPL3 gene is controlled by class II CIN-TCP transcription factors 28 Other flowering pathways controlled by TCP transcription factor 28 SAP11s depend on the coil-coiled domain to select target TCP transcription factors 29 Autophagy may be involved in the destabilization of class II TCP transcription 30 Figures 31 Tables 39 Reference 42zh_TW
dc.subjectPhase transitionen_US
dc.titleThe molecular mechanism study of SAP11-mediated alteration of flowering time and phase transition caused by phytoplasma infectionen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:生物化學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8100058001-1.pdf4.02 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.