Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorHsiou-Chen Huangen_US
dc.contributor.authorChing-Wen Chenen_US
dc.identifier.citation1. Daniele Del Rio, Amanda J. Stewart, William M., Jennifer B., Michael E. J. Lean, Furio B., & Alan Crozier, HPLC-MSn Analysis of Phenolic Compounds and Purine Alkaloids in Green and Black Tea. J. Agric. Food Chem, 2004. 52(10): p. 2807-2815. 2. 國家作物種原中心., 3. 李臺強 & 張清寬, 台灣茶樹種原圖誌. 行政院農委會茶業改良場, 2003. 4. 林滿江, 茶、糖、樟腦業與臺灣之社會經濟變遷. 聯經出版公司, 1997. 5. Nikolai Kuhnert, Unraveling the structure of the black tea thearubigins. Arch. Biochem. Biophys, 2010. 501(1): p. 37-51. 6. Nikolai K., Farnoosh D., Ghada Y., Agnieszka G., & Rakesh J., What is under the hump? Mass spectrometry based analysis of complex mixtures in processed food - lessons from the characterisation of black tea thearubigins, coffee melanoidines and caramel. Food & Function, 2013. 4(8): p. 1130-1147. 7. Ghada H. Yassin, Jan H. Koek, Sujatha Jayaraman, & Nikolai Kuhnert, Identification of Novel Homologous Series of Polyhydroxylated Theasinensins and Theanaphthoquinones in the SII Fraction of Black Tea Thearubigins Using ESI/HPLC Tandem Mass Spectrometry. J. Agric. Food Chem, 2014. 62(40): p. 9848-9859. 8. Wanfang Shao, C. Powell, & M. N. Clifford, The analysis by HPLC of green, black and Pu'er teas produced in Yunnan. J Sci Food Agric, 1995. 69(4): p. 535-540. 9. Yosuke M., Keita Okuda, Hitomi M., Ryosuke O., Yoshinori S., & Takashi T., Stereochemistry of the Black Tea Pigments Theacitrins A and C. Journal of Natural Products, 2016. 79(1): p. 189-195. 10. Yosuke M. & Takashi T., Oxidation Mechanism of Polyphenols and Chemistry of Black Tea, in Recent Advances in Polyphenol Research. 2017, John Wiley & Sons, Ltd. p. 67-88. 11. Susanne S. & Thomas H., Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J Agric Food Chem., 2005. 53(13): p. 5377-84. 12. Zhi-cong Wang, Yue-bing Sha, Xiao-bo Yu, & Yue-rong Liang, Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry. Chin. J. Chromatogr. , 2015. 33(9): p. 974-980. 13. (一財)日本食品分析センター-チャの品種識別2017., 14. 胡智益, 蔡右任, & 林順福, DNA分子標誌應用在茶樹之現況與潛力. 農業生技產業季刊, 2011. 25: p. 30-37. 15. 池宗憲, 武夷茶. 中國友誼出版公司, 2005 16. 行政院農業委員會茶業改良場., 17. Miki M. C. Wang, Ying-Jie Chen, & Jason T. C. Tzen, Tzen Oolong Tea Converted from Oolong Tea by Baking and Aging Periodically. J Agric For, 2014. 63(2): p. 83-90. 18. Feng-Yin Li, Wei-Hung Yang, Chi-I Chang, Sin-Jie Lee, Chih-Chien Hung, Ying-Jie Chen, Tzyy-Rong Jinn, & Jason T.C. Tzen, Concurrent Accumulation of Myricetin and Gallic Acid Putatively Responsible for the Umami Taste of a Specialized Old Oolong Tea. J FOOD NUTR RES, 2013. 1(6): p. 164-173. 19. Jian-qing Tian, Zi-xiang Zhu, Bing Wu, Lin Wang, & Xing-zhong Liu, Bacterial and Fungal Communities in Pu'er Tea Samples of Different Ages. Journal of Food Science, 2013. 78(8): p. 1249-1256. 20. Hasan Mukhtar & Nihal Ahmad, Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr, 2000. 71(6): p. 1698-1702. 21. Karl Fraser, Geoff A. Lane, Don E. Otter, Yacine Hemar, Siew-Young Quek, Scott J. Harrison, & Susanne Rasmussen, Analysis of metabolic markers of tea origin by UHPLC and high resolution mass spectrometry. Food Research International, 2013. 53(2): p. 827-835. 22. Guan-Heng Chen, Chin-Ying Yang, Sin-Jie Lee, Chia-Chang Wu, & Jason T.C.Tzen, Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J FOOD DRUG ANAL, 2014. 22(3): p. 303-309. 23. Bharti Badhani, Neha Sharmaa, & Rita Kakkar, Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 2015. 5(35): p. 27540-27557. 24. Daniel A Judelson, Amy E Griel, Debra Miller, Colleen X Muñoz, Mark D Kellogg, & Harris R Lieberman, Effects of theobromine, a caffeine-like substance found in cocoa and chocolate, on mood and vigilance. The FASEB Journal, 2010. 24(1): p. 209. 25. Adam Drewnowski & Carmen Gomez-Carneros, Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr, 2000. 72(6): p. 1424-1435. 26. Fuyuan Tan, Chao Tan, Aiping Zhao, & Menglong Li, Simultaneous Determination of Free Amino Acid Content in Tea Infusions by Using High-Performance Liquid Chromatography with Fluorescence Detection Coupled with Alternating Penalty Trilinear Decomposition Algorithm. J. Agric. Food Chem, 2011. 59(20): p. 10839-10847. 27. Toshihiro Mukai, Hideki Horie, & Tetsuhisa Goto, Differences in Free Amino Acids and Total Nitrogen Contents among Various Prices of Green Tea. Chagyo Kenkyu Hokoku (Tea Research Journal), 1992. 76: p. 45-50. 28. 林書妍 & 陳國任, 茶葉的香氣分析, 茶業專訊. 行政院農委會茶業改良場, 2013. Vol. 84. 29. Chi-Tang Ho, Xin Zheng, & Shiming Li, Tea aroma formation. Food Science and Human Wellness, 2015. 4(1): p. 9-27. 30. Fukuda I, Sakane I, Yabushita Y, Kodoi R, Nishiumi S, Kakuda T, Sawamura S, Kanazawa K, & Ashida H, Pigments in Green Tea Leaves (Camellia sinensis) Suppress Transformation of the Aryl Hydrocarbon Receptor Induced by Dioxin. J. Agric. Food Chem, 2004. 52(9): p. 2499-2506. 31. Prashant M.,Vinay Kumar, & Sudesh K.Y., Tea Caffeine: Metabolism, Functions, and Reduction Strategies. Food Sci. Biotechnol, 2010. 19(2): p. 275-287. 32. Rosalind J. Moore, Kim G. Jackson, & Anne M. Minihane, Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr, 2009. 102(12): p. 1790-1802. 33. Yi-Ching Yang, Feng-Hwa Lu, & Jin-Shang Wu, The Protective Effect of Habitual Tea Consumption on Hypertension. Arch Intern Med, 2004. 164: p. 1534-1540. 34. Demosthenes B. P., Christos L., Akis Z., Kyriaki G., Natassa P., Undurti N. Das, & Evangelos P., Long-Term Tea Intake is Associated with Reduced Prevalence of (Type 2) Diabetes Mellitus among Elderly People from Mediterranean Islands: MEDIS Epidemiological Study. Yonsei Medical Journal, 2009. 50(1): p. 31-38. 35. Wan-hong Du, Sheng-Ming Peng, Zhong-hua Liu, Ling Shi, Li-Feng Tan, & Xiao-Qing Zou, Hypoglycemic effect of the water extract of Pu-erh tea. J Agric Food Chem, 2012. 60(40): p. 10126-10132. 36. Salim Khulood S., Hypoglycemic Property of Ginger and Green Tea and their Possible Mechanisms in Diabetes Mellitus. The Open Conference Proceedings Journal, 2014. 5: p. 13-19. 37. Kenta Kimura, Makoto Ozeki, Lekh Raj Juneja, & Hideki Ohira, L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 2007. 74(1): p. 39-45. 38. M. A. Gough & S. J. Rowland, Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 1990. 344(12): p. 648-650. 39. Drynan J. W., Clifford M. N., Obuchowicz J., & Kuhnert N., The chemistry of low molecular weight black tea polyphenols. Natural Product Reports, 2010. 27(3): p. 417-462. 40. Nikolai Kuhnert, J. Warren Drynan, Jaczek Obuchowicz, Michael N. Clifford, & Matthias Witt, Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Commun. Mass Spectrom., 2010. 24(23): p. 3387-3404. 41. Q. Chen, J. Zhao, & J. Cai, Identification of tea varieties using computer vision. Trans. ASAE, 2008. 51(2): p. 623-628. 42. 劉士綸, 利用近紅外光譜技術進行台灣烏龍茶快速分析與鑑別之研究, 食品暨應用生物科技學系所. 2010, 中興大學. 43. Q. Chen, J. Zhao, M. Liu, & J. Cai, Nondestructive identification of tea (Camellia sinensis L.) varieties using FT-NIR spectroscopy and pattern recognition. Czech J. Food Sci., 2008. 26: 360–367. 44. Shiv S. Kaundun, Alexander Zhyvoloup, & Young-Goo Park, Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica, 2000. 115(1): p. 7-16. 45. Liang Chen & Satoshi Yamaguchi, Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. The Journal of Horticultural Science and Biotechnology, 2002. 77(6): p. 729-732. 46. S. Paul, F. N. Wachira, W. Powell, & R. Waugh, Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. , 1997. 94(2): p. 255-263. 47. T. Balasaravanan, P.K. Pius, R. Raj Kumar, N. Muraleedharan, & A.K. Shasany, Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Science, 2003. 165(2): p. 365-372. 48. Hu CY, ZT Tsai, & SF Lin, Using ISSR DNA markers to evaluate genetic diversity of tea germplasm in Taiwan. J. Agric. Assoc. China, 2005. 6: p. 463-480. 49. Hu CY, ZT Tsai, & SF Lin, Evaluating the feasibility of molecular identification for made tea varieties. J. Agric. Assoc. China, 2006. 7: p. 499-510. 50. Ya-Ping Lin, Chih-Yi Hu, You-Zenn Tsai, & Shun-Fu Lin, Studies on the Fast Molecular Identification Technologies of Made Tea (Camellia sinensis) Varieties and Their Applications. Crop, Environment & Bioinformatics, 2010. 7(1): p. 37-51. 51. S. Matsumoto, Y. Kiriiwa, & Y. Takeda, Differentiation of Japanese green tea cultivars as revealed by RFLP analysis of phenylalanine ammonia-lyase DNA. Theor. Appl. Genet., 2002. 104(6-7): p. 998-1002. 52. Shiv Kaundun & Satoru Matsumoto, Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome, 2002. 45(6): p. 1041-1048. 53. Shiv Kaundun & Satoru Matsumoto, Development of CAPS markers based on three key genes of the phenylpropanoid pathway in Tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor. Appl. Genet., 2003. 106(3): p. 375–383. 54. 胡智益, 蔡憲宗, 蔡右任, & 林順福 臺灣茶樹經濟栽培品種之成茶鑑定. 第六屆海峽兩岸茶業學術研討會論文集, 2010: p. 18-24. 55. 胡智益 & 林順福, 茶樹品種鑑定最佳利器-茶樹胞器DNA條碼技術. 茶業專訊, 2014. 89: p. 2-4. 56. Bi-jun Xie, Wei-wang Hu, Huang Shi, Qin-yun Chen, & Chi-tang Ho, Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas. Proc Natl Sci Counc Repub China B., 1994. 17(2): p. 77-84. 57. Amitava Akuli, Abhra Pal, Gopinath Bej, Tamal Dey, Arunangshu G., Bipan Tudu, Nabarun B., & Rajib B., A machine vision system for estimation of theaflavins and thearubigins in orthodox black tea. Int. J. Smart Sens. Intell. Syst., 2016. 9: p. 709-731. 58. Hsiu-Ying Lu, Applications of Multivariate Analysis in Agricultural Science. Crop, Environment & Bioinformatics, 2006. 3: p. 199-216. 59. XLSTAT 2017: Data Analysis and Statistical Solution for Microsoft Excel. Addinsoft, Paris, France (2017). 60. 汪海波, 羅莉, 吳為, 孟玲, 楊世宏, & 汪海玲, SAS統計分析與應用從入門到精通. 2015: 上奇資訊. 61. Henry F. Kaiser, The application of electronic-computers to factor-analysis. SAGE Journals, 1960. 20(1): p. 141-151. 62. 陳順宇, 多變量分析. 2005. 4: 華泰文化. 63. Jian Wang, & Peter Sporns, MALDI-TOF MS Analysis of Food Flavonol Glycosides. J. Agric. Food Chem, 2000. 48(5): p. 1657-1662. 64. Long-Ze Lin, Pei Chen, & James M. Harnly, New Phenolic Components and Chromatographic Profiles of Green and Fermented Teas. J. Agric. Food Chem, 2008. 56(17): p. 8130-8140. 65. Ya-hui Wu, Xiao-lan Jiang, Shu-xiang Zhang, Xin-long Dai, Ya-jun Liu, Hua-rong Tan, Li-ping Gao, & Tao Xia, Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS. J. Chromatogr. B, 2016. 1017-1018: p. 10-17. 66. Yang Zhao, Pei Chen, Long-ze Lin, J. M. Harnly, Liang-li Yu, & Zhang-wan Li, Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem., 2011. 126(3): p. 1269-1277. 67. Wei-xin Wang, Shu-wei Zhang, Li-shuang Lv, & Sheng-min Sang, A new method to prepare and redefine black tea thearubigins. J. Chromatogr. A, 2018. 68. 茶樹《臺灣生物多樣性資訊網-TaiBIF》, 69. Shoji Ohgami, Eiichiro Ono, Hiromi Toyonaga, Naoharu Watanabe, & Toshiyuki Ohnishi, Identification and characterization of Camellia sinensis glucosyltransferase, UGT73A17: A possible role in flavonol glucosylation. Plant Biotech J, 2014. 31: p. 573–578. 70. Li-lan Cui, Sheng-bo Yao, Xin-long Dai, Qing-gang Yin, Ya-jun Liu, & Xiao-lan Jiang, et al., Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). J Exp Bot, 2016. 67(8): p. 2285-2297. 71. Xian-qian Zhao, Pei-qiang Wang, Ming-zhuo Li, Ye-ru Wang, Xiao-lan Jiang, & Li-lan Cui, et al., Functional Characterization of a New Tea (Camellia sinensis) Flavonoid Glycosyltransferase. J. Agric. Food Chem., 2017. 65: p. 2074−2083 72. Johan Kroon, Erik Souer, Alja de Graaff, Yongbiao Xue, Joseph Mol, & Ronald Koes, Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. The Plant Journal, 1994. 5(1): p.69-80. 73. Ahuva F., Raya L., David V. H., Mira C. W., Maya Sapir-Mir, & Ron O., et al., The molecular and enzymatic basis of bitter/non-bitter flavor of citrus fruit: evolution of branch-forming rhamnosyltransferases under domestication. The Plant Journal, 2013. 73: p.166-178. 74. Felipe R. Rodas, Tito O. R., Yoshinori M., Tsukasa I., Satoko S., & Makoto S., et al., Linkage mapping, molecular cloning and functional analysis of soybean gene Fg2 encoding flavonol 3-O-glucoside (1→6) rhamnosyltransferase. Plant Mol Biol, 2014. 84: p.287-300.zh_TW
dc.description.abstract茶(Camellia sinensis)為山茶科山茶屬,若以亞種做分類,可依葉形大小分為大葉種(var. assamica)以及小葉種(var. sinensis);又可依製程氧化程度分為不發酵茶、半發酵茶及全發酵茶。在茶葉加工程序中之烘焙和發酵步驟促使其成分經多酚氧化酶、過氧化物酶及熱之轉化,導致液相層析圖譜中呈現不易分離之訊號叢,被稱為駝峰(humps)。茶種為決定價格重要因素之一,現行茶種鑑定須使用高技術成本之DNA分子標記,並對於經劇烈熱處理或重度發酵後之成茶無法鑑別。本實驗蒐集台灣各地63個成茶樣品,透過分液萃取及液相層析法分析不同品種經不同製程所作之成茶的特定駝峰指紋圖譜。結果顯示小葉種茶種皆具有P2、P3及P4訊號,且四季春、武夷、臺茶12號、臺茶13號及青心大冇另具P1訊號;而大葉種之茶種皆具有P5、P6及P7訊號,其中臺茶8號和山茶具額外訊號叢Pex。進一步透過質譜儀分析,推測駝峰中指標化合物分別為P1(Q-GaRhG)、P2(Q-GRhG)、P3(K-GaRhG)、P4(K-GRhG)、P5(Q-GRh)、P6(K-GaRh)及P7(K-GRh)。接著利用多變量統計分析之主成分分析(principal component analysis;PCA)及階層式匯聚型集群分析(hierarchical agglomerative clustering;HAC)作為驗證。綜合上述,大小葉種各具有特定之指標化合物,並繪製一Hump model,建立茶駝峰之指紋圖譜輔以乙酸乙酯層之分光值,用作茶種之判定。zh_TW
dc.description.abstractTea is produced from the leaves of Camellia sinensis which is generally classified as var. assamica and var. sinensis according to the shape of leaves. On the other hand, it can also be classified into non-fermented, semi-fermented and fully fermented tea by the degree of oxidation caused by oxidase in the tea processing. The baking and fermentation processes used in tea processing promote the conversions of their components by the activity of polyphenol oxidase and peroxidase, external heating and oxidation, resulting in a signal clusters that is not easily separated in the liquid chromatogram known as humps. Tea breed is one of the important factors in deciding commercial price. Compared with the current identification of tea breeds, high-tech and high-cost DNA molecular marker methods are used but it cannot be applied to teas which had been intense heat treatment. I aimed to analyze 63 tea samples (including different breeds of tea made by different processes) from all over places in Taiwan by using the construction of their specific hump fingerprints via liquid chromatography analysis. The results showed that (i) there are signals P2, P3 and P4 in var. sinensis, and additional signal P1 in Shy Jih Chuen, Wuu Yi, Chin Shin Dah Pan, Ttes No.12 and Ttes No.13, (ii) P5, P6, and P7 are in var. assamica, and extra signal cluster (Pex) is in Ttes No.8 and Sun Cha. Furthermore, the compounds for these signals were preliminarily identified by LC-MS/MS as P1 (Q-GaRhG), P2 (Q-GRhG), P3 (K-GaRhG), P4 (K-GRhG), P5 (Q-GRh), P6 (K-GaRh) and P7 (K-GRh) respectively. The principal component analysis (PCA) and hierarchical cluster analysis (HAC) were used to verify the results of hump fingerprints. Overall, each of var. assamica and var. sinensis has specific indicator compounds, and I establish the humps fingerprint model for the identification of the tea breeds.en_US
dc.description.tableofcontents目錄 中文摘要 i Abstract ii 目錄 iii 表目錄 iv 圖目錄 v 縮寫字對照表 vi 壹、前言 1 貳、文獻回顧 3 一、臺灣的茶種 3 二、茶葉加工過程 4 三、茶葉的分類 6 四、茶葉化學成分 7 五、茶之保健功效 9 六、成茶茶種鑑定現況 10 七、食品化學成分的駝峰分析 11 參、材料與方法 13 一、茶葉樣品 13 二、試驗方法 13 (一)液相層析樣品處理及方法 13 (二)串聯質譜儀樣品處理與分析方法 13 (三)分光光度法樣品處理與分析方法 15 (四)多變量統計分析-主成分分析(Principal Component Analysis, PCA) 15 (五)多變量統計分析-集群分析(Cluster analysis) 18 三、試驗試劑與儀器設備 20 肆、結果 22 一、不同茶樣原茶湯HPLC分析結果 22 二、各茶樣n-Butanol fraction HPLC分析結果 22 三、LC-MS/MS質譜分析結果 23 四、分光光度法測量結果 26 五、主成分分析結果 26 六、集群分析結果 28 伍、討論 33 陸、參考文獻 38 柒、圖表 45 表目錄 表一 茶葉樣品清單 45 表二 相同濃度茶湯之波長400 nm吸光測定 47 表三 茶葉樣品hump中之指標化合物 48 表四 各茶種peak平均面積比例 49 附表一 2018年春季茶葉價格表 50 附表二 各茶種鑑定方法之優缺比較表 51 附表三 P5, P6, P7質量訊號參考文獻[1] 52 附表四 P1~P7 質量訊號參考文獻[12] 53 附表五 P1~P7 質量訊號參考文獻[67] 54 附表六 P1, P2 質量訊號參考文獻[63] 55 附表七 P3, P4 質量訊號參考文獻[64] 56 附表八 相關係數矩陣(Correlation matrix) 57 附表九 主成分分析特徵值、解釋比率及累積解釋比率 58 附表十 主成分分析之特徵向量 59 附表十一 主成分負荷(Factor loading) 60 附表十二 主成分得分(Factor scores) 61 附表十三 樣品代號及茶種代號對照表 63 附表十四 歐基里德距離矩陣(分割示意圖) 64 附表十五 共同距離係數矩陣 (Cophenetic distance matrix) 71 附表十六 節點代號與樣品連結係數表 78 附表十七 五個集群的中心點性質(Class centroids) 79 附表十八 集群質心間之距離(Centroid distance) 80 附表十九 聚集式階層集群分析分群類別之結果 81   圖目錄 圖一 各茶樣茶湯色澤及葉底 82 圖二 不同茶樣原茶湯HPLC分析結果 83 圖三 各茶樣n-Butanol fraction HPLC分析結果 87 圖四 不同茶種n-Butanol fraction HPLC分析結果比較 90 圖五 小葉種LC-MS/MS分析結果 91 圖六 大葉種LC-MS/MS分析結果 93 圖七 Hump Model 94 圖八 Hump Model 分類大小葉種 95 圖九 利用指標化合物及標準化後峰下面積之平均比例分類茶種 96 圖十 各茶種茶黃素估計百分比 99 圖十一 主成分分析Biplot 100 圖十二 聚合式層階集群分析樣品相異性樹狀圖 101 附圖一 液相層析紅茶之hump圖譜 102 附圖二 實驗流程架構圖 103 附圖三 分液萃取流程圖 104 附圖四 多變量統計分析方法與目的 105 附圖五 集群分析流程圖 106 附圖六 主成分分析之陡坡圖及累積解釋圖 107 附圖七 主成分分析Loading Plot 108 附圖八 主成分得分圖 109 附圖九 連結係數與節點代號陡坡圖 110 附圖十 聚合式層階集群分析分類樹狀圖 111 附圖十一 聚合式層階集群分析分類合併剖面圖 112 附圖十二 集群之驗證-分群結果樹狀圖 113zh_TW
dc.subjectCamellia sinensisen_US
dc.titleIdentification of Tea Breeds by Means of Establishment Hump Fingerprint and Multivariate Statistical Analysisen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:生物科技學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041038-1.pdf12.14 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.