Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97764
標題: 探討蝴蝶蘭AGAMOUS-Like 6和PaPRS基因調控花被發育與對稱性之角色
Investigation of the role of Phalaenopsis AGAMOUS-Like 6 and PaPRS genes in regulating perianth development and symmetry
作者: 沈怡璇
Yi-Hsuan Shen
關鍵字: PeMADS9 (AGL6-2);PeMADS10 (AGL6-1);花被發育;色素生合成;PeMADS9 (AGL6-2);PeMADS10 (AGL6-1);formation of perianth organs;pigmentation
引用: 第一章 徐杏芬,2003。文心蘭花朵發育相關之MADS box基因之選殖及功能分析。博士論文。 李貞穎,2015。探討百合B function MADS Box 蛋白質之相互作用以調控花瓣及雄蕊之發育。博士論文。 Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM, 2011. Members of an R2R3‐MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal 65, 771-84. Chang Y-Y, Kao N-H, Li J-Y, et al., 2010. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiology 152, 837-53. Cribb PJ, Kell SP, Dixon KW, Barrett RL, 2003. Orchid conservation: a global perspective. Orchid conservation. Natural History Publications, Kota Kinabalu, 1-24. Dressler RL, 1993. Phylogeny and classification of the orchid family. Cambridge University Press. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L, 2010. MYB transcription factors in Arabidopsis. Trends in plant science 15, 573-81. Du H, Feng B-R, Yang S-S, Huang Y-B, Tang Y-X, 2012. The R2R3-MYB transcription factor gene family in maize. PLoS One 7, e37463. Dressler RL, 1993. Phylogeny and classification of the orchid family. Cambridge University Press. Honma T, Goto K, 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525. Hsu C-C, Chen Y-Y, Tsai W-C, Chen W-H, Chen H-H, 2015a. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp. Plant Physiology 168, 175-91. Hsu H-F, Hsu W-H, Lee Y-I, et al., 2015b. Model for perianth formation in orchids. Nature Plants 1, 15046. Irish VF, Sussex IM, 1990. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2, 741-53. Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK, 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-25. Kramer EM, Dorit RL, Irish VF, 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149, 765-83. Liu J, Osbourn A, Ma P, 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8, 689-708. Ma H, Pooler M, Griesbach R, 2009. Anthocyanin regulatory/structural gene expression in Phalaenopsis. Journal of the American Society for Horticultural Science 134, 88-96. Murashige T, Skoog F, 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15, 473-97. Pan ZJ, Chen YY, Du JS, et al., 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA‐like genes. New Phytologist 202, 1024-42. Petroni K, Tonelli C, 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181, 219-29. Rudall PJ, Bateman RM, 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biological Reviews 77, 403-41. Schwinn K, Venail J, Shang Y, et al., 2006. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell 18, 831-51. Su C-L, Chen W-C, Lee A-Y, et al., 2013. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS One 8, e80462. Theißen G, Melzer R, 2008. Combinatorial control of floral organ identity by MADS-domain transcription factors. Regulation of transcription in plants 29, 253-65. Theißen G, Melzer R, Rümpler F, 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259-71. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM, 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35. Zuluaga DL, Gonzali S, Loreti E, et al., 2008. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology 35, 606-18. 第二章 Boscá S, Knauer S, Laux T, 2011. Embryonic development in Arabidopsis thaliana: from the zygote division to the shoot meristem. Frontiers in Plant Science 2, 93. Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG, 1999. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Developmental biology 215, 407-19. Gallois J-L, Nora FR, Mizukami Y, Sablowski R, 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes & Development 18, 375-80. Groß-Hardt R, Laux T, 2003. Stem cell regulation in the shoot meristem. Journal of cell science 116, 1659-66. Ikeda M, Mitsuda N, Ohme-Takagi M, 2009. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21, 3493-505. Laux T, Mayer K, Berger J, Jurgens G, 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. Lian G, Ding Z, Wang Q, Zhang D, Xu J, 2014. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Scientific World Journal 2014. Matsumoto N, Okada K, 2001. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes & Development 15, 3355-64. Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T, 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805-15. Mcconnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK, 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709. Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K, 2012. Roles of the middle domain–specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24, 519-35. Otsuga D, Deguzman B, Prigge MJ, Drews GN, Clark SE, 2001. REVOLUTA regulates meristem initiation at lateral positions. Plant Journal 25, 223-36. Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K, 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes & Development 13, 1079-88. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T, 2000. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-44. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL, 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117-28. Van Der Graaff E, Laux T, Rensing SA, 2009. The WUS homeobox-containing (WOX) protein family. Genome biology 10, 248. Zhang Z, Laux T, 2011. The asymmetric division of the Arabidopsis zygote: from cell polarity to an embryo axis. Sexual Plant Reproduction 24, 161-9.
摘要: 
依據蘭花花被發育模型Perianth (P) code model提出之理論,B class MADS-box 基因中的APETALA3 (AP3)和A/E class MADS-box 基因中的AGAMOUS-Like6 (AGL6)為調控蘭花花被發育的關鍵基因。其中控制蝴蝶蘭花萼花瓣發育為SP (sepal/petal) complex,由PeMADS2 (AP3-1)及PeMADS10 (AGL6-1)所組成;而調控唇瓣發育的則為L (Lip) complex,由PeMADS3 (AP3-2)及PeMADS9 (AGL6-2)所組成。分析白花品系Phalaenopsis Sogo Yukidian V3中兩個AGL6在各部位的表現,發現PeMADS9主要表現在唇瓣,而PeMADS10則是在花萼花瓣中表現;在側花萼則同時偵測到PeMADS9和PeMADS10兩者差異化的表現。利用病毒誘導基因靜默(virus-induced gene silencing,VIGS)的技術將PeMADS9靜默後,唇瓣會往花萼花瓣化發育而使面積增大且變得較為扁平。PeMADS9靜默也同時會使側花萼變得平整,並使側花萼上與唇瓣類似的斑點消失。而在蝴蝶蘭中將PeMADS10靜默時,會使PeMADS10在側花萼的表現量下降而造成PeMADS9的表現比例相對上升,導致側花萼上下兩側不對稱且在下側的部分變得更加捲曲。以SEM觀察唇瓣與側花萼上表皮的細胞形態,發現在PeMADS9受抑制的植株中細胞形態會傾向於花瓣化;而在PeMADS10受抑制的植株中則會傾向於唇瓣化。另外將粉紅色品系蝴蝶蘭Phalaenopsis Tinny Honey F894中的PeMADS9基因靜默後,除造成唇瓣花瓣化之外,亦使側花萼上的斑點消失。而在PeMADS10基因靜默後,會同時使得花萼與花瓣上的花色及斑紋變淡或消失。進一步分析發現,上述花色的改變與三個R2R3-MYB基因的表現比例有關。綜合以上實驗結果可知,PeMADS9和PeMADS10這兩個AGL6基因除了決定蘭花花被的形成外,也同時參與蘭花色素生合成之調控。

According to the proposed orchid perianth formation model – Perianth (P) code model, B class MADS-box gene APETAL3 (AP3) and A/E class MADS-box gene AGAMOUS-Like 6 (AGL6) are key regulators of orchid perianth identity. PeMADS2 (AP3-1) and PeMADS10 (AGL6-1) form the SP (sepal/petal) complex to promote sepal/petal identity, whereas PeMADS3 (AP3-2) and PeMADS9 (AGL6-2) form the L (Lip) complex to promote lip identity. PeMADS9 mRNA mainly accumulates in lip whereas PeMADS10 mRNA accumulates in petal and sepal. Interestingly, PeMADS9 co-expressed with PeMADS10 in the lateral sepal at apparently differential levels. In PeMADS9-VIGS Phalaenopsis Sogo Yukidian V3, lip was converted into an enlarged petal/sepal-like structure. Flattened laminae and vanished spots were also observed in the lateral sepal. PeMADS10-VIGS resulted in asymmetric curves on both edges of lateral sepal. Furthermore, the suppression of PeMADS9 resulted in petal-like epidermis in lip whereas suppression of PeMADS10 resulted in lip-like epidermis in lateral sepal. In addition to the lip-to-petal conversion in Phalaenopsis Tinny Honey F894, PeMADS9-VIGS also caused the loss of the red spots in lateral sepal whereas PeMADS10-VIGS caused the significant reduction of full-red and venation in sepal and petal. Based on further analysis, the changes in flower color is correlated to the expression ratio of three R2R3-MYB genes. In summary, these results revealed that PeMADS9 and PeMADS10 not only controlled the formation of perianth organs but also regulated the pigmentation during orchid flower development.
URI: http://hdl.handle.net/11455/97764
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-15起公開。
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041019-1.pdf6.44 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.