Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97765
DC FieldValueLanguage
dc.contributor曾志正zh_TW
dc.contributorJason T.C. Tzenen_US
dc.contributor.author林逸喬zh_TW
dc.contributor.authorYi-Chiao Linen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:05:07Z-
dc.identifier.citation1. Singab, A.N.B., et al., Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. Journal of ethnopharmacology, 2005. 100(3): p. 333-338. 2. Oku, T., et al., Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity. British Journal of Nutrition, 2006. 95(5): p. 933-938. 3. Jiao, Y., et al., Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet-and streptozotocin-induced type 2 diabetes in rats. Journal of ethnopharmacology, 2017. 199: p. 119-127. 4. Yang, X., L. Yang, and H. Zheng, Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food and Chemical Toxicology, 2010. 48(8-9): p. 2374-2379. 5. Lee, Y.J., et al., Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. The American journal of Chinese medicine, 2011. 39(01): p. 39-52. 6. Park, K., et al., Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens. Journal of ethnopharmacology, 2003. 84(2-3): p. 181-185. 7. Katsube, T., et al., Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food chemistry, 2006. 97(1): p. 25-31. 8. Oh, H., et al., Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin, and stilbene from Morus alba. Planta medica, 2002. 68(10): p. 932-934. 9. Lo, Y.-H., et al., Emoghrelin, a unique emodin derivative in Heshouwu, stimulates growth hormone secretion via activation of the ghrelin receptor. Journal of ethnopharmacology, 2015. 159: p. 1-8. 10. Lo, Y.-H., et al., Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor. Journal of agricultural and food chemistry, 2014. 62(22): p. 5085-5091. 11. Christenhusz, M.J. and J.W. Byng, The number of known plants species in the world and its annual increase. Phytotaxa, 2016. 261(3): p. 201-217. 12. Suttie, J., Morus alba L. Grassland Species Profiles, 2012. 13. 顏翊橞, 桑葉萃取物於 streptozotocin 誘發之糖尿病大鼠之抗糖尿病作用. 中山醫學大學營養學研究所學位論文, 2012: p. 1-99. 14. 何晓英, et al., 天然植物及中药黄酮类对糖尿病的药理作用. 医学综述, 2003. 9(10): p. 629-630. 15. Schaffner, J.H., The nature of the diecious condition in Morus alba and Salix amygdaloides. 1919. 16. Wu, Z., Z.-K. Zhou, and M.G. Gilbert, Morus alba. eFloras. Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA. Retrieved, 2013. 27. 17. Galeotti, F., et al., Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 2008. 1(1): p. 44-48. 18. Higdon, J. and V. Drake, Micronutrient Information Center: Flavanoids. Linus Pauling Institute/Oregon State University. http://lpi. oregonstate. edu/infocenter/phytochemicals/flavonoids/. Accessed, 2015. 3. 19. Morling, J.R., S.E. Yeoh, and D.N. Kolbach, Rutosides for treatment of post‐thrombotic syndrome. The Cochrane Library, 2015. 20. Martinez‐Zapata, M.J., et al., Phlebotonics for venous insufficiency. The Cochrane Library, 2016. 21. Pennesi, C.M., et al., Use of Isoquercetin in the Treatment of Prurigo Nodularis. Journal of drugs in dermatology: JDD, 2017. 16(11): p. 1156-1158. 22. Silva, C., et al., In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata. Phytomedicine, 2009. 16(8): p. 761-767. 23. Mager, W.H. and J. Winderickx, Yeast as a model for medical and medicinal research. Trends in pharmacological sciences, 2005. 26(5): p. 265-273. 24. 陳伶宜 and 余艇, 以離心分配層析法製備分離桑葉中五種有效成分. 2009. 25. Kotani, M., et al., Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. Journal of Allergy and Clinical Immunology, 2000. 106(1): p. 159-166. 26. Ishiguro, K. and H. Oku, Antipruritic effect of flavonol and 1, 4‐naphthoquinone derivatives from Impatiens balsamina L. Phytotherapy Research: An International Journal Devoted to Medical and Scientific Research on Plants and Plant Products, 1997. 11(5): p. 343-347. 27. 王柏森 and 余艇, 使用離心分配層析法分離桑葉中的有效成分. 2012. 28. Enkhmaa, B., et al., Mulberry (Morus alba L.) leaves and their major flavonol quercetin 3-(6-malonylglucoside) attenuate atherosclerotic lesion development in LDL receptor-deficient mice. The Journal of nutrition, 2005. 135(4): p. 729-734. 29. Katsube, T., et al., Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet‐induced obese mice. Journal of the Science of Food and Agriculture, 2010. 90(14): p. 2386-2392. 30. Wang, L., et al., Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry, 2006. 54(26): p. 9798-9804. 31. Watson, A.A., et al., Polyhydroxylated alkaloids—natural occurrence and therapeutic applications. Phytochemistry, 2001. 56(3): p. 265-295. 32. Nash, R.J., et al., Iminosugars as therapeutic agents: recent advances and promising trends. Future medicinal chemistry, 2011. 3(12): p. 1513-1521. 33. Miyahara, C., et al., Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. Journal of nutritional science and vitaminology, 2004. 50(3): p. 161-164. 34. Ostlund Jr, R.E., Phytosterols in human nutrition. Annual review of nutrition, 2002. 22(1): p. 533-549. 35. Rudkowska, I., et al., Cholesterol-lowering efficacy of plant sterols in low-fat yogurt consumed as a snack or with a meal. Journal of the American College of Nutrition, 2008. 27(5): p. 588-595. 36. Grundy, S.M., E. Ahrens, and G. Salen, Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies. Journal of lipid research, 1968. 9(3): p. 374-387. 37. Wilt, T., et al., Beta-sitosterols for benign prostatic hyperplasia (Cochrane Review). The Cochrane Library, 1999(3). 38. Kim, T.-H., et al., Dietary supplements for benign prostatic hyperplasia: An overview of systematic reviews. Maturitas, 2012. 73(3): p. 180-185. 39. Jorgensen, E.M., Gaba. 2005. 40. Watanabe, M., et al., GABA and GABA receptors in the central nervous system and other organs, in International review of cytology. 2002, Elsevier. p. 1-47. 41. Sato, S., et al., Sexually dimorphic modulation of GABAA receptor currents by melatonin in rat gonadotropin-releasing hormone neurons. The Journal of Physiological Sciences, 2008. 58(5): p. 317-322. 42. Jo, S.-J., et al., Changes in contents of γ-aminobutyric acid (GABA) and isoflavones in traditional Korean Doenjang by ripening periods. Journal of the Korean Society of Food Science and Nutrition, 2011. 40(4): p. 557-564. 43. Lee, B.-H. and T.-M. Pan, Benefit of Monascus-fermented products for hypertension prevention: a review. Applied microbiology and biotechnology, 2012. 94(5): p. 1151-1161. 44. Li, D.-P. and H.-L. Pan, Role of γ-aminobutyric acid (GABA) A and GABAB receptors in paraventricular nucleus in control of sympathetic vasomotor tone in hypertension. Journal of Pharmacology and Experimental Therapeutics, 2007. 320(2): p. 615-626. 45. Kim, H.G., et al., Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson's disease models. British Journal of Nutrition, 2010. 104(1): p. 8-16. 46. Lu, J.-m., et al., Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. Journal of ethnopharmacology, 2016. 179: p. 291-300. 47. Naowaboot, J., et al., Mulberry leaf extract restores arterial pressure in streptozotocin-induced chronic diabetic rats. Nutrition Research, 2009. 29(8): p. 602-608. 48. Armstrong, A.M., et al., The effect of dietary treatment on lipid peroxidation and antioxidant status in newly diagnosed noninsulin dependent diabetes. Free Radical Biology and Medicine, 1996. 21(5): p. 719-726. 49. Ceriello, A., New insights on oxidative stress and diabetic complications may lead to a 'causal' antioxidant therapy. Diabetes care, 2003. 26(5): p. 1589-1596. 50. Rösen, P., et al., The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored byUNESCO‐MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes/metabolism research and reviews, 2001. 17(3): p. 189-212. 51. Lee, C.Y., S.M. Sim, and H.M. Cheng, Systemic absorption of antioxidants from mulberry (Morus alba L) leaf extracts using an in situ rat intestinal preparation. Nutrition research, 2007. 27(8): p. 492-497. 52. Lee, C.Y., S.M. Sim, and H.M. Cheng, Phenylacetic acids were detected in the plasma and urine of rats administered with low-dose mulberry leaf extract. Nutrition research, 2008. 28(8): p. 555-563. 53. Enkhmaa, B., et al., Lipoprotein (a): genotype–phenotype relationship and impact on atherogenic risk. Metabolic syndrome and related disorders, 2011. 9(6): p. 411-418. 54. Pan, M.-H., C.-S. Lai, and C.-T. Ho, Anti-inflammatory activity of natural dietary flavonoids. Food & function, 2010. 1(1): p. 15-31. 55. Nyblom, H., et al., The AST/ALT ratio as an indicator of cirrhosis in patients with PBC. Liver International, 2006. 26(7): p. 840-845. 56. Nyblom, H., et al., High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol and alcoholism, 2004. 39(4): p. 336-339. 57. Clark, V.L. and J.A. Kruse, Clinical methods: the history, physical, and laboratory examinations. Jama, 1990. 264(21): p. 2808-2809. 58. Li, Y.-G., et al., Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. Journal of Ethnopharmacology, 2011. 134(3): p. 961-970. 59. Van Der Lely, A.J., et al., Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocrine reviews, 2004. 25(3): p. 426-457. 60. Gutierrez, J.A., et al., Ghrelin octanoylation mediated by an orphan lipid transferase. Proceedings of the National Academy of Sciences, 2008. 105(17): p. 6320-6325. 61. Kojima, M., et al., Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 1999. 402(6762): p. 656. 62. Sakata, I., et al., Ghrelin-producing cells exist as two types of cells, closed-and opened-type cells, in the rat gastrointestinal tract. Peptides, 2002. 23(3): p. 531-536. 63. Müller, T.D., et al., Ghrelin. Molecular metabolism, 2015. 4(6): p. 437-460. 64. Bednarek, M.A., et al., Structure− function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. Journal of medicinal chemistry, 2000. 43(23): p. 4370-4376. 65. Zigman, J.M., et al., Expression of ghrelin receptor mRNA in the rat and the mouse brain. Journal of Comparative Neurology, 2006. 494(3): p. 528-548. 66. Jia, Y., et al., Programmed alterations in hypothalamic neuronal orexigenic responses to ghrelin following gestational nutrient restriction. Reproductive Sciences, 2008. 15(7): p. 702-709. 67. Hattori, N., et al., GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(9): p. 4284-4291. 68. Gnanapavan, S., et al., The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. The Journal of Clinical Endocrinology & Metabolism, 2002. 87(6): p. 2988-2991. 69. Howard, A.D., et al., A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 1996. 273(5277): p. 974-977. 70. Schellekens, H., T.G. Dinan, and J.F. Cryan, Lean mean fat reducing 'ghrelin' machine: hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology, 2010. 58(1): p. 2-16. 71. Schwartz, T.W., et al., Molecular mechanism of 7TM receptor activation—a global toggle switch model. Annu. Rev. Pharmacol. Toxicol., 2006. 46: p. 481-519. 72. Cruz, C.R.Y. and R.G. Smith, The growth hormone secretagogue receptor. Vitamins & Hormones, 2007. 77: p. 47-88. 73. Holst, B., et al., High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist. Molecular endocrinology, 2003. 17(11): p. 2201-2210. 74. Jia, Y., et al., Expression of growth hormone secretagogue receptor type 1a in visceral vagal and spinal afferent pathways. Sheng li xue bao:[Acta physiologica Sinica], 2008. 60(1): p. 149-155. 75. Cummings, D.E., et al., A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 2001. 50(8): p. 1714-1719. 76. Nakazato, M., et al., A role for ghrelin in the central regulation of feeding. Nature, 2001. 409(6817): p. 194. 77. Kamegai, J., et al., Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes, 2001. 50(11): p. 2438-2443. 78. Kohno, D., et al., Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes, 2003. 52(4): p. 948-956. 79. Castaneda, T., et al., Ghrelin in the regulation of body weight and metabolism. Frontiers in neuroendocrinology, 2010. 31(1): p. 44-60. 80. Fujino, K., et al., Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. The Journal of physiology, 2003. 550(1): p. 227-240. 81. Nakamura, T., T. Onaga, and T. Kitazawa, Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin‐sensitive neural pathway: in vivo and in vitro functional studies. Neurogastroenterology & Motility, 2010. 22(4): p. 446. 82. Zheng, J., et al., Ghrelin regulates gastric phase III‐like contractions in freely moving conscious mice. Neurogastroenterology & Motility, 2009. 21(1): p. 78-84. 83. Asakawa, A., et al., Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut, 2005. 54(1): p. 18-24. 84. Klok, M., S. Jakobsdottir, and M. Drent, The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity reviews, 2007. 8(1): p. 21-34. 85. Levin, F., et al., Ghrelin stimulates gastric emptying and hunger in normal-weight humans. The Journal of Clinical Endocrinology & Metabolism, 2006. 91(9): p. 3296-3302. 86. Moon, M., et al., Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotoxicity research, 2009. 15(4): p. 332-347. 87. Cappellari, G.G., et al., Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet induced hyperglycemia and whole-body insulin resistance in rodents. Diabetes, 2016: p. db151019. 88. Obay, B.D., et al., Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model. Peptides, 2008. 29(3): p. 448-455. 89. Granata, R., et al., Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Experimental biology and medicine, 2011. 236(5): p. 505-514. 90. Li, Y., et al., Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrine, 2013. 43(2): p. 376-386. 91. Wang, W., et al., Ghrelin protects mice against endotoxemia-induced acute kidney injury. American Journal of Physiology-Renal Physiology, 2009. 297(4): p. F1032-F1037. 92. Veldhuis, J.D. and D.M. Keenan, Model-based evaluation of growth hormone secretion, in Methods in enzymology. 2012, Elsevier. p. 231-248. 93. Date, Y., et al., Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology, 2000. 141(11): p. 4255-4261. 94. Takaya, K., et al., Ghrelin strongly stimulates growth hormone release in humans. The Journal of Clinical Endocrinology & Metabolism, 2000. 85(12): p. 4908-4911. 95. Veldhuis, J.D., et al., Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocrine reviews, 2006. 27(2): p. 101-140. 96. Raun, K., et al., Ipamorelin, the first selective growth hormone secretagogue. European journal of endocrinology, 1998. 139(5): p. 552-561. 97. Hansen, T.K., et al., Novel orally active growth hormone secretagogues. Journal of medicinal chemistry, 1998. 41(19): p. 3705-3714. 98. Dean, D.C., et al., Development of a high specific activity sulfur-35-labeled sulfonamide radioligand that allowed the identification of a new growth hormone secretagogue receptor. Journal of medicinal chemistry, 1996. 39(9): p. 1767-1770. 99. Pan, L.C., et al., Preclinical pharmacology of CP-424,391, and orally active pyrazolinone-piperidine growth hormone secretagogue. Endocrine, 2001. 14(1): p. 121-132. 100. Nagamine, J., et al., Pharmacological profile of a new orally active growth hormone secretagogue, SM-130686. Journal of Endocrinology, 2001. 171(3): p. 481-489. 101. Fraser, G.L., H.R. Hoveyda, and G.S. Tannenbaum, Pharmacological demarcation of the growth hormone, gut motility and feeding effects of ghrelin using a novel ghrelin receptor agonist. Endocrinology, 2008. 149(12): p. 6280-6288. 102. Ejskjaer, N., et al., A phase 2a, randomized, double‐blind 28‐day study of TZP‐102 a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterology & Motility, 2013. 25(2). 103. Sallam, H.S. and J.D. Chen, The prokinetic face of ghrelin. International journal of peptides, 2010. 2010. 104. Méquinion, M., et al., Ghrelin: central and peripheral implications in anorexia nervosa. Frontiers in endocrinology, 2013. 4: p. 15. 105. Avau, B., et al., Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterology & Motility, 2013. 25(9): p. 720-732. 106. Nass, R., et al., Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Annals of Internal Medicine, 2008. 149(9): p. 601-611. 107. Murphy, M., et al., Oral Administration of the Growth Hormone Secretagogue MK‐677 Increases Markers of Bone Turnover in Healthy and Functionally Impaired Elderly Adults. Journal of bone and mineral research, 1999. 14(7): p. 1182-1188. 108. Toshinai, K., et al., Ghrelin stimulates growth hormone secretion and food intake in aged rats. Mechanisms of ageing and development, 2007. 128(2): p. 182-186. 109. White, H.K., et al., Effects of an oral growth hormone secretagogue in older adults. The Journal of Clinical Endocrinology & Metabolism, 2009. 94(4): p. 1198-1206. 110. Atcha, Z., et al., Cognitive enhancing effects of ghrelin receptor agonists. Psychopharmacology, 2009. 206(3): p. 415-427. 111. Li, L., et al., Cardioprotective effects of ghrelin and des‐octanoyl ghrelin on myocardial injury induced by isoproterenol in rats 1. Acta Pharmacologica Sinica, 2006. 27(5): p. 527-535. 112. Yamazaki, M., et al., Regulational effect of ghrelin on growth hormone secretion from perifused rat anterior pituitary cells. Journal of neuroendocrinology, 2002. 14(2): p. 156-162. 113. Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, 2014. 42(W1): p. W252-W258. 114. Moukhametzianov, R., et al., Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor. Proceedings of the National Academy of Sciences, 2011. 108(20): p. 8228-8232. 115. Rasmussen, S.G., et al., Structure of a nanobody-stabilized active state of the β 2 adrenoceptor. Nature, 2011. 469(7329): p. 175. 116. Fiser, A. and R.K.G. Do, Modeling of loops in protein structures. Protein science, 2000. 9(9): p. 1753-1773. 117. Shen, M.y. and A. Sali, Statistical potential for assessment and prediction of protein structures. Protein science, 2006. 15(11): p. 2507-2524. 118. Holst, B., et al., Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor. Molecular pharmacology, 2006. 70(3): p. 936-946. 119. Yang, J.M. and C.C. Chen, GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics, 2004. 55(2): p. 288-304. 120. Yang, J.M., Development and evaluation of a generic evolutionary method for protein–ligand docking. Journal of Computational Chemistry, 2004. 25(6): p. 843-857. 121. Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of computational chemistry, 1983. 4(2): p. 187-217. 122. Dixon, S.L. and K.M. Merz, One-dimensional molecular representations and similarity calculations: methodology and validation. Journal of Medicinal Chemistry, 2001. 44(23): p. 3795-3809. 123. Tao, Y., et al., Rapid screening and identification of α‐glucosidase inhibitors from mulberry leaves using enzyme‐immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 2013. 27(2): p. 148-155. 124. Zhang, W., et al., HPLC‐DAD‐ESI‐MS/MS Analysis and Antioxidant Activities of Nonanthocyanin Phenolics in Mulberry (Morus alba L.). Journal of food science, 2008. 73(6). 125. Sugiyama, M., et al., Varietal differences in the flavonol content of mulberry (Morus spp.) leaves and genetic analysis of quercetin 3-(6-malonylglucoside) for component breeding. Journal of agricultural and food chemistry, 2013. 61(38): p. 9140-9147. 126. Verhoeyen, M., et al., Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2002. 53(377): p. 2099-2106. 127. Vauzour, D., et al., The neuroprotective potential of flavonoids: a multiplicity of effects. Genes & nutrition, 2008. 3(3): p. 115. 128. Hsieh, S.-K., et al., Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. journal of food and drug analysis, 2015. 23(4): p. 660-670. 129. Pimentel, G.C. and A.L. McClellan, The hydrogen bond. 1960. 130. Anslyn, E.V. and D.A. Dougherty, Modern physical organic chemistry. 2006: University science books. 131. De Vriese, C. and C. Delporte, Ghrelin: a new peptide regulating growth hormone release and food intake. The international journal of biochemistry & cell biology, 2008. 40(8): p. 1420-1424.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97765-
dc.description.abstract白桑(Morus alba)原生長於中國北方,後來廣植於全世界。於中藥典籍內記載桑全株皆可入藥,其葉性寒、味苦甘,具疏解風熱、清肝明目及改善食慾等療效。近年研究指出桑葉具降血壓、血糖、血脂、抗氧化及護肝等功能,其中黃酮類醇配糖體(Flavonol Glycoside)的槲皮素3-丙二醯基葡萄糖苷(Quercetin 3-malonylglucoside;Q3MG)具有抑制低密度脂蛋白氧化、預防粥狀動脈硬化之功能。依據以上Q3MG的相關研究與飢餓素(Ghrelin)已知生理功能如脂質代謝及心血管系統調控等生理活性相似,而本實驗室先前研究發現茶飢素(Teaghrelin)與首烏飢素(Emoghrelin)等化合物之結構與功能類似Ghrelin,而Q3MG又與此兩個化合物結構類似,因此鎖定Q3MG並進一步探討與Ghrelin之關聯。Ghrelin由28個胺基酸所組成之胜肽類荷爾蒙,能促進食慾及刺激生長激素的分泌。Ghrelin的缺乏可能使食慾、生長激素的分泌、心血管系統及新陳代謝受到影響。目前Ghrelin和其衍生藥物面臨口服利用率偏低及副作用等問題。本實驗透過Q3MG萃取物,以10-4-10-8 M濃度作用於Sprague Dawley(SD)大鼠之腦下垂體初代細胞,並與已知能刺激生長激素分泌的Ghrelin衍生藥物Growth hormone-releasing peptide 6(GHRP-6)之正對照組相比較,檢視Q3MG類Ghrelin之生理活性。初步結果顯示高劑量(10-5 M)之Q3MG能有效刺激腦下垂體生長激素分泌,證實此化合物具類Ghrelin之生理活性。利用GHS-R1a接受器拮抗劑來檢視Q3MG是否與GHRP-6為相同路徑,再使用分子對接模擬測試計算出可能之接位,並進一步探討天然化合物來源之類Ghrelin活性化合物之生物利用率及藥物開發可能性。zh_TW
dc.description.tableofcontents目次 中文摘要 i Abstract iii 目次 v 圖表目次 viii 全名及縮寫對照表 ix 壹、前言 1 貳、文獻回顧 4 一、桑樹介紹 4 (一)桑樹分類及品種 4 (二)桑葉化學成分 5 (三)桑之保健功效 8 二、飢餓素介紹 12 (一)飢餓素的構造 12 (二)飢餓素接受器 13 (三)食慾與攝食量的生理作用 14 (四)其他之生理活性 15 (五)刺激生長激素分泌的作用 17 (六)飢餓素與飢餓素衍生物於疾病治療之應用 19 參、材料方法 21 一、實驗材料 21 (一)桑葉樣品 21 二、試劑及儀器設備 21 (一)藥品與化學試劑 21 (二)試驗材料 23 (三)儀器設備 23 (四)試驗動物 24 三、實驗方法 25 (一)高效液相層析儀分析之樣品製備及方法 25 (二)液相串聯質譜儀分析之樣品製備及方法 25 (三)速效液相層析儀純化之樣品製備及方法 26 (四)大鼠腦下垂體前葉初代細胞製備 27 (五)細胞生理活性試驗 27 (六)同源模擬與分子對接模擬運算 28 (七)統計分析 29 肆、結果 30 一、桑葉成份分析及化合物之純化 30 (一)桑葉用高效液相層析儀分析結果 30 (二)桑葉用液相串聯質譜儀分析結果 30 (三)桑葉用速效液相層析儀純化結果 32 二、細胞試驗結果 32 (一)桑葉萃取物細胞實驗結果 32 (二)Q3MG細胞實驗結果 33 三、同源模擬與分子對接模擬運算結果 34 伍、討論 37 陸、圖表 42 柒、附錄 56 捌、參考文獻 61zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2019-08-09起公開。zh_TW
dc.subject桑葉zh_TW
dc.subjectQ3MGzh_TW
dc.subject大鼠腦下垂體初代細胞zh_TW
dc.subject生長激素zh_TW
dc.subject飢餓素zh_TW
dc.subjectMulberryen_US
dc.subjectQ3MGen_US
dc.subjectprimary pituitary cell cultureen_US
dc.subjectgrowth hormoneen_US
dc.subjectghrelinen_US
dc.title桑葉中槲皮素3-丙二醯基葡萄糖苷具有類飢餓素刺激生長激素分泌活性測定zh_TW
dc.titleBioactivity of Quercetin 3-malonylglucoside in Mulberry, mimicking ghrelin to stimulate growth hormone secretionen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2019-08-09zh_TW
dc.date.openaccess2019-08-09-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:生物科技學研究所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-7105041015-1.pdf4.13 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.