Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97770
DC FieldValueLanguage
dc.contributor王敏盈zh_TW
dc.contributorMin-Ying Wangen_US
dc.contributor.author卓冠吟zh_TW
dc.contributor.authorKuan-Yin Choen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:05:09Z-
dc.identifier.citation參考文獻 Ahasan M, Hussain K, Islam M. 2002. Adaptation of infectious bursal disease virus on vero cell line. Online Journal of Biological Science 2:633-635. Arifin MA, Mel M, Salim SH, Karim MIA, Hassan SS. 2011. Optimization of Newcastle disease virus production in T-flask. African Journal of Biotechnology 10(81):18816-18823. Arnold FH. 1991. Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 9(2):151-6. Becht H, Muller H, Muller HK. 1988. Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J Gen Virol 69 ( Pt 3):631-40. Ben Abdeljelil N, Khabouchi N, Mardassi H. 2008. Efficient rescue of infectious bursal disease virus using a simplified RNA polymerase II-based reverse genetics strategy. Arch Virol 153(6):1131-7. Berg TP, Gonze M, Meulemans G. 1991. Acute infectious bursal disease in poultry: Isolation and characterisation of a highly virulent strain. Avian Pathol 20(1):133-43. Boot HJ, Dokic K, Peeters BP. 2001. Comparison of RNA and cDNA transfection methods for rescue of infectious bursal disease virus. J Virol Methods 97(1-2):67-76. Boyer JC, Haenni AL. 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198(2):415-26. Brandt M, Yao K, Liu M, Heckert RA, Vakharia VN. 2001. Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 75(24):11974-82. Brown MD, Green P, Skinner MA. 1994. VP2 sequences of recent European 'very virulent' isolates of infectious bursal disease virus are closely related to each other but are distinct from those of 'classical' strains. J Gen Virol 75 ( Pt 3):675-80. Caston JR, Martinez-Torrecuadrada JL, Maraver A, Lombardo E, Rodriguez JF, Casal JI, Carrascosa JL. 2001. C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75(22):10815-28. Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA. 2005. The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120(6):761-72. Da Costa B, Chevalier C, Henry C, Huet JC, Petit S, Lepault J, Boot H, Delmas B. 2002. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol 76(5):2393-402. Dobos P, Hill BJ, Hallett R, Kells DT, Becht H, Teninges D. 1979. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32(2):593-605. Doong SR, Chen YH, Lai SY, Lee CC, Lin YC, Wang MY. 2007. Strong and heterogeneous adsorption of infectious bursal disease VP2 subviral particle with immobilized metal ions dependent on two surface histidine residues. Anal Chem 79(20):7654-61. Enami M, Luytjes W, Krystal M, Palese P. 1990. Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci U S A 87(10):3802-5. Fernandez-Arias A, Risco C, Martinez S, Albar JP, Rodriguez JF. 1998. Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. J Gen Virol 79 ( Pt 5):1047-54. Gaberc-Porekar V, Menart V. 2001. Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49(1-3):335-60. Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D. 1995. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. Embo j 14(24):6087-94. Grgacic EV, Anderson DA. 2006. Virus-like particles: passport to immune recognition. Methods 40(1):60-5. Hernandez M, Villegas P, Hernandez D, Banda A, Maya L, Romero V, Tomas G, Perez R. 2010. Sequence variability and evolution of the terminal overlapping VP5 gene of the infectious bursal disease virus. Virus Genes 41(1):59-66. Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK. 1998. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248(2):295-304. Hirai K, Funakoshi T, Nakai T, Shimakura S. 1981. Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Dis 25(2):484-96. Hochuli E, Dobeli H, Schacher A. 1987. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177-84. Jackwood DH, Saif YM, Hughes JH. 1987. Replication of infectious bursal disease virus in continuous cell lines. Avian Dis 31(2):370-5. Jackwood DJ. 2017. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus. Vet Microbiol 206:121-125. Jordan I, John K, Howing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zadori Z and others. 2016. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathol 45(2):137-55. Kibenge FS, Dhillon AS, Russell RG. 1988. Growth of serotypes I and II and variant strains of infectious bursal disease virus in Vero cells. Avian Dis 32(2):298-303. Kibenge FS, McKenna PK. 1992. Isolation and propagation of infectious bursal disease virus using the ovine kidney continuous cell line. Avian Dis 36(2):256-61. Kibenge FS, Qian B, Nagy E, Cleghorn JR, Wadowska D. 1999. Formation of virus-like particles when the polyprotein gene (segment A) of infectious bursal disease virus is expressed in insect cells. Can J Vet Res 63(1):49-55. Kochan G, Gonzalez D, Rodriguez JF. 2003. Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol 148(4):723-44. Lai SY, Chang GR, Yang HJ, Lee CC, Lee LH, Vakharia VN, Wang MY. 2014. A single amino acid in VP2 is critical for the attachment of infectious bursal disease subviral particles to immobilized metal ions and DF-1 cells. Biochim Biophys Acta 1844(7):1173-82. Lee CC, Ko TP, Chou CC, Yoshimura M, Doong SR, Wang MY, Wang AH. 2006. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol 155(1):74-86. Lee CC, Ko TP, Lee MS, Chou CC, Lai SY, Wang AH, Wang MY. 2003. Purification, crystallization and preliminary X-ray analysis of immunogenic virus-like particles formed by infectious bursal disease virus (IBDV) structural protein VP2. Acta Crystallogr D Biol Crystallogr 59(Pt 7):1234-7. Lee HJ, Kim JY, Kye SJ, Seul HJ, Jung SC, Choi KS. 2015. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4. Virol J 12:177. Letzel T, Coulibaly F, Rey FA, Delmas B, Jagt E, van Loon AA, Mundt E. 2007. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus. J Virol 81(23):12827-35. Lim BL, Cao Y, Yu T, Mo CW. 1999. Adaptation of very virulent infectious bursal disease virus to chicken embryonic fibroblasts by site-directed mutagenesis of residues 279 and 284 of viral coat protein VP2. J Virol 73(4):2854-62. Lin TW, Lo CW, Lai SY, Fan RJ, Lo CJ, Chou YM, Thiruvengadam R, Wang AH, Wang MY. 2007. Chicken heat shock protein 90 is a component of the putative cellular receptor complex of infectious bursal disease virus. J Virol 81(16):8730-41. Lombardo E, Maraver A, Caston JR, Rivera J, Fernandez-Arias A, Serrano A, Carrascosa JL, Rodriguez JF. 1999. VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73(8):6973-83. Lombardo E, Maraver A, Espinosa I, Fernandez-Arias A, Rodriguez JF. 2000. VP5, the nonstructural polypeptide of infectious bursal disease virus, accumulates within the host plasma membrane and induces cell lysis. Virology 277(2):345-57. Luque D, Saugar I, Rodriguez JF, Verdaguer N, Garriga D, Martin CS, Velazquez-Muriel JA, Trus BL, Carrascosa JL, Caston JR. 2007. Infectious bursal disease virus capsid assembly and maturation by structural rearrangements of a transient molecular switch. J Virol 81(13):6869-78. Maraver A, Ona A, Abaitua F, Gonzalez D, Clemente R, Ruiz-Diaz JA, Caston JR, Pazos F, Rodriguez JF. 2003. The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 77(11):6438-49. McFerran JB, McNulty MS, McKillop ER, Connor TJ, McCracken RM, Collins DS, Allan GM. 1980. Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathol 9(3):395-404. Muller H, Islam MR, Raue R. 2003. Research on infectious bursal disease--the past, the present and the future. Vet Microbiol 97(1-2):153-65. Muller H, Mundt E, Eterradossi N, Islam MR. 2012. Current status of vaccines against infectious bursal disease. Avian Pathol 41(2):133-9. Muller H, Scholtissek C, Becht H. 1979. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31(3):584-9. Mundt E, Beyer J, Muller H. 1995. Identification of a novel viral protein in infectious bursal disease virus-infected cells. J Gen Virol 76 ( Pt 2):437-43. Mundt E, Vakharia VN. 1996. Synthetic transcripts of double-stranded Birnavirus genome are infectious. Proc Natl Acad Sci U S A 93(20):11131-6. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E and others. 1999. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96(16):9345-50. Nieper H, Muller H. 1996. Susceptibility of chicken lymphoid cells to infectious bursal disease virus does not correlate with the presence of specific binding sites. J Gen Virol 77 ( Pt 6):1229-37. Pascual E, Mata CP, Gomez-Blanco J, Moreno N, Barcena J, Blanco E, Rodriguez-Frandsen A, Nieto A, Carrascosa JL, Caston JR. 2015. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J Virol 89(5):2563-74. Pathange LP, Bevan DR, Larson TJ, Zhang C. 2006. Correlation between protein binding strength on immobilized metal affinity chromatography and the histidine-related protein surface structure. Anal Chem 78(13):4443-9. Porath J, Carlsson J, Olsson I, Belfrage G. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258(5536):598-9. Qi X, Gao Y, Gao H, Deng X, Bu Z, Wang X, Fu C, Wang X. 2007. An improved method for infectious bursal disease virus rescue using RNA polymerase II system. J Virol Methods 142(1-2):81-8. Qin Y, Zheng SJ. 2017. Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs. Int J Mol Sci 18(1). Raja P, Senthilkumar TMA, Priyadarshini CV, Parthiban M, Thangavelu A, Mangala Gowri A, Palanisammi A, Kumanan K. 2018. Sequence analysis of VP2 hypervariable region of the field isolates of infectious bursal disease viruses from southern region of India. Acta Virol 62(1):86-97. Reed LJ, Muench H. 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. American Journal of Epidemiology 27(3):493-497. Rekha K, Sivasubramanian C, Chung IM, Thiruvengadam M. 2014. Growth and replication of infectious bursal disease virus in the DF-1 cell line and chicken embryo fibroblasts. Biomed Res Int 2014:494835. Schnitzler D, Bernstein F, Muller H, Becht H. 1993. The genetic basis for the antigenicity of the VP2 protein of the infectious bursal disease virus. J Gen Virol 74 ( Pt 8):1563-71. Snyder DB. 1990. Changes in the field status of infectious bursal disease virus. Avian Pathol 19(3):419-23. Tsodikov OV, Record MT, Jr., Sergeev YV. 2002. Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J Comput Chem 23(6):600-9. van Loon AA, de Haas N, Zeyda I, Mundt E. 2002. Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chickens. J Gen Virol 83(Pt 1):121-9. Vidalain PO, Tangy F. 2010. Virus-host protein interactions in RNA viruses. Microbes Infect 12(14-15):1134-43. Wu D, Qi T, Li W-X, Tian H, Gao H, Wang J, Ge J, Yao R, Ren C, Wang X-B and others. 2017. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res. Wu Y, Hong L, Ye J, Huang Z, Zhou J. 2009. The VP5 protein of infectious bursal disease virus promotes virion release from infected cells and is not involved in cell death. Arch Virol 154(12):1873-82. Yip CW, Yeung YS, Ma CM, Lam PY, Hon CC, Zeng F, Leung FC. 2007. Demonstration of receptor binding properties of VP2 of very virulent strain infectious bursal disease virus on Vero cells. Virus Res 123(1):50-6. 祁小乐, 王笑梅, 高宏雷, 高玉龙. 2006. 鸡传染性法氏囊病病毒的反向遗传研究. 病毒学报 22(3):237-240. 黃齡玉. 2012. 傳染性華氏囊炎病毒於 DF-1 細胞的增殖及以膠體過濾層析法純化病毒顆粒. 中興大學生物科技學研究所學位論文:1-48. 楊函蓁. 2008. 研究傳染性華氏囊病毒次病毒顆粒 VP2 蛋白 表面胺基酸 His249 與 His253 對鎳離子 之親合性及免疫原性的影響. 中興大學生物科技學研究所學位論文:1-58. 董學儒. 2006. 家禽傳染性華氏囊病病毒與 VP2 次病毒顆粒對固定化鎳離子之異相吸附. 中央大學化學工程與材料工程學系學位論文:1-98. 劉聖哲. 2018. 三個重組 D78 傳染性華氏囊病病毒之生產與固定化金屬離子親和性層析純化方法. 中興大學生物科技學研究所學位論文:1-49. 蔡向榮, 呂榮修. 1993. 年台灣雞傳染性華氏囊病大流行之疫情分析. 中華獸醫誌 19:249-258.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97770-
dc.description.abstract中文摘要 傳染性華氏囊病病毒(Infectious Bursal Disease Virus, IBDV)主要感染3-6週齡的幼雞,病理上會造成雞華氏囊的B淋巴細胞壞死和免疫系統受抑制,感染後常伴隨高罹病率與高致死率而使養雞業者蒙受大量的經濟損失。先前研究發現IBDV次病毒顆粒可以利用固定化金屬(鎳)離子親和性層析法(Immobilized Metal (nickel) Ion Affinity Chromatography, IMAC) 進行有效地純化,關鍵胺基酸暴露於SVP VP2蛋白 P domain上的His253能吸附上Ni-NTA。為利用IMAC有效地純化完整的IBDV病毒顆粒,本研究利用反向遺傳學,根據蛋白結構軟體預測IBDV rD78各個胺基酸的曝露面積,選取曝露面積較大的Ser251、Ser317和Gln320 三個位置以Histidine取代後,得到重組病毒rD78-S251H、-S317H、-Q320H。首先分別感染DF-1細胞及Vero細胞進行病毒增殖,結果發現Vero細胞比DF-1細胞突變重組病毒之病毒力價高23-68倍,由於DF-1培養基含有胎牛血清,造成干擾病毒顆粒與鎳離子結合的能力而影響純化效率,Vero細胞培養於無血清細胞培養基,能夠提高純化效率,取純化各分層,透過西方點墨法分析VP2蛋白,發現rD78-S251H及rD78-Q320H集中於pH 4.0析出,而rD78-WT與rD78-S317H病毒顆粒於Flow through提早沖提出,顯示Histidine取代Q320與S251提高與鎳離子結合的能力較強,但由穿透式電子顯微鏡圖中觀察rD78-WT的完整病毒顆粒較多。除此之外,進行pCI-D78A plasmid及IBDV 本土株P3009 Segment A片段之定序,以同樣的方式產生P3009重組病毒株,利於後續之研究可提供疫苗做為防治IBDV感染,也可將此技術應用於其他病毒或似病毒顆粒的生產與純化。zh_TW
dc.description.abstractAbstract Infectious Bursal Disease Virus (IBDV) mainly infects young chickens aged 3-6 weeks and pathologically causes necrosis of the B lymphocytes and suppression of the immune system. The infection is often accompanied by high morbidity and high mortality and so that often cause the poultry farmers suffering from huge economic loss. Recently, we concluded that the exposed residue His253 of a VP2-formed SVP is crucial for binding affinity of SVP to Ni-NTA. In order to effectively purify IBDV virus particles by IMAC, in this study, predict the exposure area of each amino acid of IBDV rD78 according to the protein structure software. Substitution of a specific amino acid at three residues in VP2 including Ser251, Ser317 and Gln320 with histidine may increase the ability of recombinant IBDV to bind to nickel ions, making them useful for IMAC purification. The recombinant IBDV mutants were subjected to DF- 1 cells and Vero cells for virus production and purification. It was found that Vero cells were 23-68 times more potent than the DF-1 cell mutant recombinant virus. However, since the medium of DF-1 cells contains fetal bovine serum (FBS), which may interfere with the ability of virus particles to bind and hence affect the results. Vero cells culture in serum-free medium to improver purification efficiency. The virus solution were further purified by IMAC. During purification, virus particles were eluted at the step of pH4.0 elution meanwhile rD78-WT and rD78- S371H were eluted earlier at the step of pH 7.8 equilibrium, indicating that rD78-S251H and rD78-Q320H virus particle are more capable of binding nickel ions than WT and S251H. However, more complete virus particle of rD78-WT were observed by transmission electron microscopy. In addition, the sequence of p300-D78A plasmid and PBD9 Segment A fragment of IBDV native strain was completed. The P3009 recombinant virus strain is produced in the same manner, which facilitates the subsequent research to provide a vaccine for the prevention and treatment of IBDV infection, and can also be applied to the production and purification of other viruses or virus-like particles.en_US
dc.description.tableofcontents目錄 誌謝 i 中文摘要 ii Abstract iii 表目錄 vi 圖目錄 vii 第一章 研究目的與動機 1 第二章 文獻回顧 2 1. 傳染性華氏囊病病毒 (Infectious Bursal Disease Virus) 2 1.1 傳染性華氏囊病 2 1.2 病毒之分類與特性 2 1.3病毒的型態與特性 3 1.4 病毒基因體組成與蛋白產物之功能 3 1.5病毒的增殖 4 2. 固定化金屬離子親和層析 (Immobilized-Metal Ion Affinity Chromatography) 5 3. 反轉遺傳技術 (Reverse Genetics) 5 4. 巨分子與溶劑接觸面積之計算概念 7 第三章 材料與方法 8 1. 藥品與試劑 8 2. 儀器 10 3. 病毒與細胞 11 3.1傳染性華氏囊病病毒 11 3.2雞胚胎纖維母細胞株DF-1之培養與繼代 11 3.3 綠猿腎臟細胞株 Vero cell之培養與繼代 11 3.4 解凍細胞 12 3.5 冷凍細胞 12 4. 重組病毒的製備 12 4.1 重組病毒之質體 12 4.2 共轉染 (Co-Transfection) 13 4.3 病毒RNA萃取與定序 13 4.4 重組病毒的增殖 14 5. 病毒力價測定 14 6. 以固定化金屬離子親和性管柱 (Ni-NTA)純化病毒 14 7. 重組病毒蛋白之分析與鑑定 15 7.1 SDS-聚丙烯胺凝膠電泳 (SDS-PAGE) 15 7.2西方墨漬法 (Western Blotting) 15 8. 病毒液濃縮 16 8.1 38% 蔗糖沉降 (38% sucrose cushion) 16 8.2超高速沉降病毒 16 9. 穿透式電子顯微鏡 16 10. IBDV P3009 Segment A與pCI-D78A之定序 16 10.1 P3009 病毒增殖 16 10.2 病毒RNA萃取與定序 16 10.3 生產pCI-D78A之質體 17 第四章 實驗結果 18 1. rD78 重組病毒增殖 18 1.1 增殖並純化重組質體 18 1.2 共轉染 18 1.3 以DF-1細胞病毒繼代及病毒力價的測定 18 1.4以Vero細胞病毒繼代及病毒力價的測定 19 2. rD78 病毒顆粒之純化 19 2.1 rD78 病毒顆粒以Ni-NTA樹酯進行純化 19 2.2 比較rD78 WT與突變株純化之分析 19 2.3 穿透式電子顯微鏡圖分析 20 3. IBDV P3009 Segment A重組序列 20 3.1 IBDV P3009 Segment A定序 20 3.2 pCI-D78A 質體定序 21 3.3 設計重組IBDV P3009A之序列 21 第五章 討論 23 第六章 結論與未來展望 27 第七章 參考文獻 28 結果圖表 35 附錄圖表 56zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2021-08-31起公開。zh_TW
dc.subject傳染性華氏囊病病毒zh_TW
dc.subject固定化金屬(鎳)離子親和性層析法zh_TW
dc.subject病毒純化zh_TW
dc.subjectInfectious Bursal Disease Virusen_US
dc.subjectImmobilized-Metal Ion Affinity Chromatographyen_US
dc.subjectvirus purificationen_US
dc.title表面組胺酸取代之傳染性華氏囊病病毒突變株的生產和胺基酸取代對其與固定化鎳離子結合能力的影響zh_TW
dc.titleProduction of infectious bursal disease virus mutants with surficial histidine substitution and the effect of substitution on its binding ability to immobilized nickel ionsen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-31zh_TW
dc.date.openaccess2021-08-31-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:生物科技學研究所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041026-1.pdf5.65 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.