Please use this identifier to cite or link to this item:
標題: 野生稻Oryza nivara抗褐飛蝨基因座Bph31(t)之抗性機制分析與精細定位
Resistance characterization and fine mapping of Bph31(t), a brown planthopper resistance locus from wild rice Oryza nivara
作者: 柯亭君
Ting-Jyun Ke
關鍵字: 抗褐飛蝨基因座;Bph31(t);Bph31(t);brown planthopper;resistance locus
引用: 參考文獻 林慶元(2007) 植物保護圖鑑系列‐水稻保護,行政院農業委員會動植物防疫檢疫局。 陳隆澤,黃守宏,鄭清煥(2009) 水稻病蟲害抗性檢定工作回顧,台灣水稻保護成果及新展望研討會專刊: 83‐103。 李長沛,吳東鴻等(2014) 野生稻Oryza nivara抗褐飛蝨基因導入系統的抗性基因定位研究。研討會論文 宋怡萱(2017)野生稻Oryza nivara的Bph31(t)抗褐飛蝨基因座之精細定位與抗性分析 Chelliah, S., & Bharathi, M. (1993). Biotypes of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae)—host inXuenced biology and behavior. Chemical ecology of phytopathogous insects. International Science Publishers, New York, 133-148. Cheng, X., Zhu, L., & He, G. (2013). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular plant, 6(3), 621-634. Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., ... & He, G. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences, pnas-0912139106. Du, Y., Zhang, J., Yan, Z., Ma, Y., Yang, M., Zhang, M., ... & Cao, Q. (2016). Host preference and performance of the yellow peach moth (Conogethes punctiferalis) on chestnut cultivars. PloS one, 11(6), e0157609. Fujisaki, K., Abe, Y., Ito, A., Saitoh, H., Yoshida, K., Kanzaki, H., ... & Terauchi, R. (2015). Rice Exo70 interacts with a fungal effector, AVR‐Pii, and is required for AVR‐Pii‐triggered immunity. The Plant Journal, 83(5), 875-887. Fujita, D., Kohli, A., & Horgan, F. G. (2013). Rice resistance to planthoppers and leafhoppers. Critical reviews in plant sciences, 32(3), 162-191. Guo, J., Xu, C., Wu, D., Zhao, Y., Qiu, Y., Wang, X., ... & Shangguan, X. (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature genetics, 50(2), 297. Hu, L., Wu, Y., Wu, D., Rao, W., Guo, J., Ma, Y., ... & Huang, J. (2017). The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. The Plant Cell, tpc-00263. Jena, K. K., & Kim, S. M. (2010). Current status of brown planthopper (BPH) resistance and genetics. Rice, 3(2-3), 161-171. Ji, H., Kim, S. R., Kim, Y. H., Suh, J. P., Park, H. M., Sreenivasulu, N., ... & Lee, G. S. (2016). Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Scientific reports, 6, 34376. Kumar, K., Sarao, P. S., Bhatia, D., Neelam, K., Kaur, A., Mangat, G. S., ... & Singh, K. (2017). High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma & Shastry) derived interspecific F 2 population. Theoretical and Applied Genetics, 1-9. Ling, Y., & Weilin, Z. (2016). Genetic and biochemical mechanisms of rice resistance to planthopper. Plant cell reports, 35(8), 1559-1572. Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., ... & Zhou, F. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature biotechnology, 33(3), 301. Lv, W., Du, B., Shangguan, X., Zhao, Y., Pan, Y., Zhu, L., ... & He, G. (2014). BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC genomics, 15(1), 674. Myint, K. K. M., Fujita, D., Matsumura, M., Sonoda, T., Yoshimura, A., & Yasui, H. (2012). Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52. Theoretical and applied genetics, 124(3), 495-504. Prahalada, G. D., Shivakumar, N., Lohithaswa, H. C., Gowda, D. S., Ramkumar, G., Kim, S. R., ... & Jena, K. K. (2017). Identification and fine mapping of a new gene, BPH31 conferring resistance to brown planthopper biotype 4 of India to improve rice, Oryza sativa L. Rice, 10(1), 41. Ren, J., Gao, F., Wu, X., Lu, X., Zeng, L., Lv, J., ... & Ren, G. (2016). Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific reports, 6, 37645. Sogawa, K., & Cheng, C. H. (1979). Economic thresholds, nature of damage, and losses caused by the brown planthopper. Brown planthopper: Threat to rice production in Asia. International Rice Res. Institute, Manila, 125-142. SRIVASTAVA, C., Chander, S., Sinha, S. R., & Palta, R. K. (2009). Toxicity of various insecticides against Delhi and Palla population of brown plant hopper (Nilaparvata lugens).. Stegmann, M., Anderson, R. G., Ichimura, K., Pecenkova, T., Reuter, P., Žárský, V., ... & Trujillo, M. (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. The Plant Cell, tpc-112. Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., ... & Wang, M. Q. (2016). Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Scientific reports, 6, 26043. Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., ... & Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific reports, 4, 5872. Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., ... & Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific reports, 4, 5872. Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., ... & Luo, X. (2015). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of experimental botany, 66(19), 6035-6045. Wang, Y., Tang, M., Hao, P., Yang, Z., Zhu, L., & He, G. (2008). Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata, 129(3), 295-307. Žárský, V., Kulich, I., Fendrych, M., & Pečenková, T. (2013). Exocyst complexes multiple functions in plant cells secretory pathways. Current opinion in plant biology, 16(6), 726-733. Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., ... & Pan, Y. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences, 113(45), 12850-12855.
重要作物水稻經常受到具有高度傷害性的褐飛蝨brown planthopper (BPH, Nilaparvata lugens Stål)侵襲,此單食性的昆蟲會以刺吸式口器吸取韌皮部汁液,並間接傳染病毒,導致產量銳減,由於抗蟲水稻有迫切需求,故行政院農業委員會農業試驗所(TARI)將印度野生稻O. nivara的顯性抗褐飛蝨基因Bph31(t)導入台農71品系(TNG71,又名KN188)中,選育出KN210品系(TNG71-Bph31(t)),抗性檢定發現KN210高達3.6,而KN188僅為7。本實驗中,利用抗性(KN210)與感性(KN188)兩品系的水稻進行抗蟲機制的分析,在antixenosi方面,發現較高比例的褐飛蝨會選擇KN188棲息,由Y型嗅覺儀實驗確認應是因氣味所致,並找到一個僅出現於KN188水稻的氣味分子,可能具有誘引褐飛蝨的效果,將續進行深入探討。檢查KN210是否亦有antibiosis抗性,發現褐飛蝨有從KN210移動到KN188的偏好性,且限制在KN210上攝食的褐飛蝨其生長速度較低而死亡率較高,檢測植物萃取物,發現有三個成分會因為褐飛蝨取食而改變含量,但尚待質譜分析鑑定。而在tolerance方面,發現KN210顯著較KN188強健,單位時間內失重較少,且在KN188全數死亡時仍全數存活。經由比較兩品系的理化性質差異,發現KN210的莖稈較硬,篩管較為狹窄,且總醣含量較高,callose也較易累積,可能導致褐飛蝨取食KN210較為困難。以上證據顯示KN210具有多面向的優良抗性,應可穩定提供水稻抵抗褐飛蝨侵襲,值得選殖其抗性基因。初步定位分析顯示Bph31(t)基因座位於4號染色體上,對褐飛蝨的抗性變異解釋量(Proportions of Variance Explained, PVE)高,且文獻未曾有報導,未來將自O. nivara的基因組中尋求此抗性基因。

Brown planthopper (BPH) is the most devastating insect pest in rice-growing areas and cause enormous yield loss. BPH is a monophagous phloem feeder on rice which removes a significant amount of photoassimilates and causes its wilting. Breeding and planting of BPH-resistance rice lines are the most sustainable and environmental friendly ways to cope with BPH infestation. As the BPH-resistance genes are mainly exist in wild rice, Taiwan Agricultural Research Institute (TARI) had introduced a single dominant BPH-resistant locus from the wild rice O. nivara into the local elite cultivar TNG71 (KN188) to generate its near-isogenic line, KN210, via a 10-year breeding process. Evaluations of BPH-resistance revealed that KN210 possesses BPH resistance index as high as 3.6, compared to 7 for the KN188. In this study, we compared KN210 against KN188 to explore its BPH resistance mechanism. In the settling-choice test, BPH showed a higher frequency on choosing KN188 than KN210 as host, indicates an antixenosis resistance for KN210. Confirmed by Y-tube test, volatile compound searched by GC-MS revealed one compound, exists only in KN188, may act as an insect attractant. In the feeding-preference test, BPH kept on moving from KN210 to KN188 during a time period of 72 hrs, suggests that some resistance actions may be exerted in KN210 after BPH infestation. Moreover, the no-choice test with confined BPH revealed higher lethal rates and lower growth rates on KN210 than on KN188. These observations suggest an antibiosis to BPH in which some toxic proteins or secondary metabolites may be produced by KN210. Moreover, as all tested KN188 plants died while all KN210 survived on day 15 after heavy BPH infestation, together with a lower functional plant loss index (FPLI) found in KN210, suggest a tolerance ability for KN210. Overall, heavy cell wall composition, higher resistance in stem penetration, narrower phloem for sap ingestion, and spotted callose deposition hindrance, all provide KN210 with multiple ways to reduce the BPH infestation. Previously, crude mapping has revealed that the BPH-resistance gene, temporally named as Bph31(t), was located on chromosome 4. Future molecular cloning of Bph31(t) needs to be performed on the whole genome sequenced O. nivara.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生物科技學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105041052-1.pdf4.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.